Python-Stanford-CoreNLP 项目安装与使用教程
1. 项目目录结构及介绍
python-stanford-corenlp
是一个使用 Python 语言封装的 Stanford CoreNLP 工具包。以下是其主要的目录结构及文件介绍:
python-stanford-corenlp/
├── CHANGES.txt # 版本更新信息
├── CONTRIBUTING.md # 贡献指南
├── DISCLAIMER.txt # 免责声明
├── INSTALL.txt # 安装指南
├── LICENSE.txt # 许可证信息
├── MANIFEST.in # 包含文件列表
├── README.md # 项目说明文件
├── setup.py # 安装脚本
├── stanfordcorenlp/ # 核心代码目录
│ ├── __init__.py # 初始化文件
│ ├── __main__.py # 主程序文件
│ ├── client.py # 客户端类
│ ├── config.py # 配置类
│ ├── corenlp_client.py # CoreNLP 客户端实现
│ ├── downloader.py # 下载器类
│ └── server.py # 服务端类
└── tests/ # 测试代码目录
├── __init__.py
├── test_client.py
├── test_config.py
├── test_corenlp_client.py
└── test_server.py
2. 项目的启动文件介绍
项目的启动文件为 stanfordcorenlp/__main__.py
。以下是启动文件的主要内容:
from stanfordcorenlp.server import CoreNLPClient
if __name__ == "__main__":
# 这里可以根据需要进行配置,例如设置 CoreNLP 的 IP 地址和端口号
client = CoreNLPClient(annotators=['tokenize','ssplit','pos','lemma','ner'], timeout=30000, memory='16G')
# 使用 client 对象进行文本处理
# 示例:text = "Hello, world!"
# result = client.annotate(text)
# print(result)
client.close()
用户可以根据自己的需求,配置 CoreNLP 的参数,例如添加不同的标注器、设置超时时间、内存大小等。
3. 项目的配置文件介绍
项目的配置文件为 stanfordcorenlp/config.py
。以下是配置文件的主要内容:
# 默认配置
DEFAULTS = {
'annotators': 'tokenize,ssplit,pos,lemma,ner', # 默认标注器
'output_format': 'json', # 输出格式
'timeout': 30000, # 超时时间
'memory': '16G', # 分配给 Java 虚拟机的内存
'beamWidth': 4, # 解析器的 beam 宽度
'tokenize.options': 'split BiasPairPunct', # 分词选项
'ssplit.eolonly': 'false', # 是否仅在行尾进行句子分割
'pos.model': 'english-bidirectional-distsim.tagger', # 词性标注模型
# 更多配置...
}
# 从环境变量中获取配置,如果没有设置则使用默认配置
config = {**(os.environ.get('CORENLP_CONFIG', DEFAULTS))}
用户可以在环境变量中设置自己的配置,或者在代码中直接修改 config.py
文件中的配置项。这些配置将影响 CoreNLP 的行为和性能。