自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

luchi007的专栏

csdn: https://blog.csdn.net/u010223750 知乎:https://zhuanlan.zhihu.com/luchi007 联系邮箱luchi727@qq.com...

原创 AutoML之NAS

前言 autoML最近非常火热,在调参、特征选择等方面都有了不少的进展,与其同时,在深度网络日益复杂化的今天,如何为任务设计合适的网络结构成了每位炼丹工程师的日常,而在缺乏先验知识的情况下,调整网络结构往往需要较长的时间和精力,如何自适应的调整网络结构就成了一个值得研究的问题。今天主要介绍的是au...

2020-06-19 00:08:03 44 0

原创 RTB竞价流控-budget pacing

前言 前一篇写了关系rtb bidding stragegy的相关内容,这一篇主要介绍的是RTB竞价中的流控策略:budget pacing,主要内容是让广告主预算平稳花完,防止出现预算突然花完这种情况。[注:本笔记主要围绕着Display Advertising with Real-Time B...

2019-12-22 00:09:47 287 0

原创 RTB竞价策略学习

背景 近一年的工作基本是围绕着广告ctr/cvr模型优化展开的,但是对竞价广告整体框架还是缺乏了解,最近准备学习一下RTB相关的内容,笔记主要围绕着Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting ...

2019-12-21 09:12:55 254 0

原创 Online learning系列:从RDA、FOBOS到FTRL

前言 在一般的机器学习任务中,往往是通过batch的训练方法进行离线训练,然后线上进行预测,通常离线模型更新的时间在1天以上,这就使得模型不能及时学到实时的特征;另一方面,如果要进行实时训练的话,需要特征尽量稀疏,因为大规模的机器学习往往伴随着大量的参数,如果做不到特征计量稀疏的话,实时预估时延就...

2018-12-05 11:41:54 910 0

原创 Reinforcement Learning强化学习系列之五:值近似方法Value Approximation

引言 前面说到了强化学习中的蒙特卡洛方法(MC)以及时序差分(TD)的方法,这些方法针对的基本是离散的数据,而一些连续的状态则很难表示,对于这种情况,通常在强化学习里有2中方法,一种是针对value function的方法,也就是本文中提到的值近似(value approximation);另一...

2018-02-09 23:12:18 1641 5

原创 Reinforcement Learning强化学习系列之四:时序差分TD

引言 前面一篇讲的是蒙特卡洛的强化学习方法,蒙特卡罗强化学习算法通过考虑采样轨迹,克服了模型未知给策略估计造成的困难,不过蒙特卡罗方法有一个缺点,就是每次需要采样完一个轨迹之后才能更新策略。蒙特卡洛方法没有充分利用学习任务的MDP结构,而时序差分学习方法Temporal Difference(T...

2018-01-02 21:04:47 5668 6

原创 Reinforcement Learning强化学习系列之三:MC Control

引言 前面一篇文章中说到了MC prediction,主要介绍的是如何利用采样轨迹的方法计算Value函数,但是在强化学习中,我们主要想学习的是Q函数,也就是计算出每个state对应的action以及其reward值,在这篇文章中,将会介绍。 MC control with epsilon...

2017-12-24 11:40:10 1802 0

原创 Reinforcement Learning强化学习系列之二:MC prediction

引言 这几个月一直在忙找工作和毕业论文的事情,博客搁置了一段时间,现在稍微有点空闲时间,又啃起了强化学习的东西,今天主要介绍的是强化学习的免模型学习free-model learning中的最基础的部分蒙特卡洛方法(Monte Carlo),并以21点游戏作为说明。 本文主要参考的文献是[1]...

2017-12-23 11:40:38 2951 0

原创 Reinforcement Learning强化学习系列之一:model-based learning

前言在机器学习和深度学习坑里呆了有一些时日了,在阿里实习过程中,也感觉到了工业界和学术界的一些迥异,比如强化学习在工业界用的非常广泛,而自己之前没有怎么接触过强化学习的一些知识,所以感觉还是要好好的补一补更新一下自己的知识库,以免被AI时代抛弃。强化学习初识强化学习要素强化学习可以用下面这张图表示...

2017-09-03 12:08:47 12509 7

原创 pytorch入门

pytorch的入手博文,介绍了pytorch的一些语法规范,和搭建一些常用的神经网络内容,以及和tensorflow的一些比较

2017-06-08 17:31:16 22293 0

原创 tensorflow高阶教程:tf.dynamic_rnn

引言TensorFlow很容易上手,但是TensorFlow的很多trick却是提升TensorFlow心法的法门,之前说过TensorFlow的read心法,现在想说一说TensorFlow在RNN上的心法,简直好用到哭 【以下实验均是基于TensorFlow1.0】简要介绍tensorflow...

2017-05-02 11:27:07 51341 15

原创 Tensorflow高阶读写教程

前言tensorflow提供了多种读写方式,我们最常见的就是使用tf.placeholder()这种方法,使用这个方法需要我们提前处理好数据格式,不过这种处理方法也有缺陷:不便于存储和不利于分布式处理,因此,TensorFlow提供了一个标准的读写格式和存储协议,不仅如此,TensorFlow也提...

2017-04-24 21:54:19 23027 7

原创 Tensorflow的采样方法:candidate sampling

TensorFlow candidate sampling

2017-04-10 18:29:49 10115 0

原创 受限制玻尔兹曼机(RBM)用于电影推荐小例

引言前一篇简要的介绍了受限制玻尔兹曼机原理的文章,RBM的应用有很多,本文打算根据这篇博文的例子做一个使用RBM进行电影推荐的系统.数据来源数据来源:[Movielens movie dataset],(http://grouplens.org/datasets/movielens/1m/) 鸣...

2017-03-13 22:07:24 7397 2

原创 受限制玻尔兹曼机RBM原理简介

引言 受限玻尔兹曼机RBM在深度学习领域一直有重要的应用,之前一直没有接触过RBM,觉得太复杂,公式太多,这几天在Google上找到些好的turtorial,可以在这里做一个总结。 玻尔兹曼机BM BM背景 Boltzmann machines(BM)是Markov Random ...

2017-03-10 12:49:58 17097 1

原创 理解和解决Python2中的编码问题

前言经常处理一些文本,处理英文语料没什么问题,但是到了中文这儿就让人抓狂了,稍微不注意就会窜出各种乱码错误,平时出现几个小错误试试调调也能过去,但是对于编码这个问题还是畏惧,这几天好好整理了一下python的编码问题,感谢万能的Google和万能的StackOverflow,算是解决了我当前对编码...

2017-02-25 18:09:40 20266 0

原创 简单的PRML阅读笔记

PRML简单的阅读笔记,些微Mark一下

2017-02-20 10:36:06 883 0

原创 tensorflow实现基于LSTM的文本分类方法

使用tensor flow实验基于LSTM 的文本分类方法

2016-11-25 14:47:13 49355 171

原创 tensorflow中cifar-10文档的Read操作

前言 在tensorflow的官方文档中得卷积神经网络一章,有一个使用cifar-10图片数据集的实验,搭建卷积神经网络倒不难,但是那个cifar10_input文件着实让我费了一番心思。配合着官方文档也算看的七七八八,但是中间还是有一些不太明白,不明白的mark一下,这次记下一些已经明白的。 ...

2016-11-20 22:29:52 3018 1

原创 Hadoop笔记之三:WordCount实验续

## 引言 ## 在上一篇的文章中,基本了解了Hadoop的Map-Reduce大致框架,根据官方教程,对WordCount实验有了新的补充,补充基本是在Map-Reduce中加入作业Job的一些控制信息,这就来看下。 ## 实验 ## 先上文档的代码package com.luchi...

2016-11-11 10:30:44 880 0

原创 Hadoop笔记之二:运行WordCount实验

实验环境Hadoop版本:Hadoop2.7.3 linux版本:Ubuntu JDK版本:JDK1.7实验步骤 设置HADOOP的PATH和HADOOP CLASSPATH(这里假设java的相关路径已经配置好) export HADOOP_HOME=/home/luchi/Hadoop/h...

2016-10-17 16:02:47 5234 0

原创 Hadoop笔记之一:安装单节点集群

Hadoop入坑搞数据挖掘的还不会Hadoop/spark,感觉各种丢人,看了一眼天池的比赛,都不知道从哪儿下手,决定痛下决心搞一搞Hadoop,也算是渣硕的救赎吧。之前还在犹豫是从Hadoop开始还是从spark开始,虽然spark最近很流行,据说还有替代Hadoop的趋势,不过毕竟spark是...

2016-10-10 20:11:15 1586 0

原创 关于最大似然与交叉熵损失函数和最小二乘法的思考

最大似然估计与logistic交叉熵损失函数以及线性回归过程中的最小二乘法的关系理解

2016-10-07 15:07:28 8338 1

原创 python迭代器itertools

引言itertools是python中的迭代器,有非常强大的功能,掌握这个能够减少很多的编码量,需要写个博文mark一下Lets begin chain def chain(*iterables): # chain('ABC', 'DEF') --&...

2016-06-27 11:36:01 872 0

将博客搬至CSDN

新博客地址 http://blog.csdn.net/u010223750 欢迎关注

2016-05-30 16:20:21 56 0

将博客搬至CSDN

2016-05-30 16:20:21 57 0

原创 深度学习之六,基于RNN(GRU,LSTM)的语言模型分析与theano代码实现

引言前面已经介绍过RNN的基本结构,最基本的RNN在传统的BP神经网络上,增加了时序信息,也使得神经网络不再局限于固定维度的输入和输出这个束缚,但是从RNN的BPTT推导过程中,可以看到,传统RNN在求解梯度的过程中对long-term会产生梯度消失或者梯度爆炸的现象,这个在这篇文章中已经介绍了原...

2016-05-26 21:49:55 32989 14

原创 深度学习在文本分类中的应用

引言文本分类这个在NLP领域是一个很普通而应用很广的课题,而且已经有了相当多的研究成果,比如应用很广泛的基于规则特征的SVM分类器,以及加上朴素贝叶斯方法的SVM分类器,当然还有最大熵分类器、基于条件随机场来构建依赖树的分类方法、当然还有普通的BP神经网络分类方法。在传统的文本分类词袋模型中,在将...

2016-05-17 20:16:02 35119 6

原创 基于gibbsLDA的文本分类

之前几篇文章讲到了文档主题模型,但是毕竟我的首要任务还是做分类任务,而涉及主题模型的原因主要是用于text representation,因为考虑到Topic Model能够明显将文档向量降低维度,当然TopicModel可以做比这更多的事情,但是对于分类任务,我觉得这一点就差不多了。   ...

2016-05-06 21:07:25 3905 1

原创 本文建模系列值三:LDA感悟

LDA:Latent Dirichlet Allocation 是一个很著名的文本模型,最初是在2003年被一群大牛提出的,包括David M.Blei 、Andrew Y.Ng等。和之前的pLSA文本模型相比,LDA算是贝叶斯观点的pLSA,所谓贝叶斯观点,就是什么都是不确定的,不像pLSA中的...

2016-05-06 21:02:24 961 0

原创 文本建模系列之二:pLSA

“庙小妖风大,水浅王八多”。还是这句话,这是业余研究生的文本建模系列之二:关于pLSA。前述就到此。   pLSA:Probabilistic Latent Senmantic Indexing.是Hoffman在1999年提出的基于概率的隐语义分析【1】。之所以说是probabili...

2016-05-06 21:01:30 2507 0

原创 文本建模系列之一:LSA

俗话说“庙小妖风大,水浅王八多”,作为一名自然语言处理的水货研究生,通常只是对论文有着一知半解的了解,然而因为毕竟人老了年纪大容易忘事,有时候还是想把这一知半解的想法用文字写出来,以便之后回顾,看官勿喷,水货要开始动笔了。   文本建模是自然语言处理领域中很基础的内容,而且也已经被研究...

2016-05-06 21:00:41 2514 0

原创 神经网络更新参数的几种方法

梯度下降中,计算完各个参数的导数之后就需要更新参数值了,最常用的更新参数方法就是:   【SGD】: x += - learning_rate * dx    但是这种方法收敛速度非常慢,其实除了这个更新参数的方法,还有很多的方法可以进行参数更新。   ...

2016-05-06 20:59:06 4964 1

转载 Understanding LSTM Networks

Recurrent Neural Networks Humans don’t start their thinking from scratch every second. As you read this essay, you understand each word based on y...

2016-05-06 20:57:08 764 0

原创 深度学习之五:使用GPU加速神经网络的训练

使用神经网络训练,一个最大的问题就是训练速度的问题,特别是对于深度学习而言,过多的参数会消耗很多的时间,在神经网络训练过程中,运算最多的是关于矩阵的运算,这个时候就正好用到了GPU,GPU本来是用来处理图形的,但是因为其处理矩阵计算的高效性就运用到了深度学习之中。Theano支持GPU编程,但是只...

2016-05-06 20:54:37 28882 0

原创 深度学习之四:使用Theano编写神经网络

上一篇说到windows下面的Theano安装,在前面的文章中也介绍了几种常见的神经网络形式,今天就使用Theano来编写一个简单的神经网络   我把Theano形容成一个模子,这个模子提供了一些计算方法,然后我们只需要定义模子的形状和填充数据就可以了,且慢慢看:   首先...

2016-05-06 20:50:35 3401 0

原创 深度学习之三:RNN

RNN,也就是Recurrent Neural Network,循环神经网络,是非线性动态系统,将序列映射到序列,主要参数有五个:[Whv, Whh, Woh, bh, bo, h0] ,典型的结构图如下: 解释一下上图: 和普通神经网络一样,RNN有输入层输出层和隐含层,不一...

2016-05-06 20:45:22 6230 1

原创 coreNLP的使用

最近考虑做些英文词语词干化的工作,听说coreNLP这个工具不错,就拿来用了。 coreNLP是斯坦福大学开发的一套关于自然语言处理的工具(toolbox),使用简单功能强大,有;命名实体识别、词性标注、词语词干化、语句语法树的构造还有指代关系等功能,使用起来比较方便。 coreNLP...

2016-05-06 20:44:10 7478 2

原创 深度学习之二:CNN推导

前面看过了CNN的基本结构,经典的模式如下图:   上图经典的CNN模型主要可以概括为三个部分: convolution层:convolution是将原来的输入向量映射成多个feature map,每个feature map的权重和偏移量都是一样的 sub-...

2016-05-06 20:41:28 3916 1

原创 windows下安装theano

最近在学习深度学习的一些内容,需要用到深度学习的库:theano。但是theano这玩意在Linux或者mac OS 下面比较好安装,只需要先装Anaconda然后使用Python的安装命令符,pip install theano即可,但是在windows中,之前装的时候经常报错出现 no m...

2016-05-06 20:40:00 1645 0

提示
确定要删除当前文章?
取消 删除