Breaching:联邦学习隐私攻击框架

Breaching:联邦学习隐私攻击框架

breaching Breaching privacy in federated learning scenarios for vision and text breaching 项目地址: https://gitcode.com/gh_mirrors/br/breaching

项目介绍

Breaching 是一个基于 PyTorch 的开源框架,专注于在联邦学习(Federated Learning, FL)场景中实施针对隐私的攻击。该框架实现了多种梯度反转攻击,能够在视觉和文本领域中,针对不同规模的聚合进行隐私泄露。Breaching 不仅涵盖了最新的研究成果,如“Robbing The Fed”和“Decepticons”,还包含了一系列优化攻击、分析攻击和递归攻击的实现。

项目技术分析

Breaching 框架的核心在于其模块化的设计,分为两个主要组件:breaching.attacksbreaching.casesbreaching.attacks 模块包含了多种攻击方法,而 breaching.cases 则定义了不同的使用场景,包括服务器威胁模型、用户设置、模型架构和数据集。所有攻击和场景都可以通过 breaching/config 中的配置进行高度定制和扩展。

技术亮点

  • 模块化设计:攻击和场景的模块化设计使得用户可以轻松地添加新的攻击方法或使用场景,而无需修改现有代码。
  • 多领域支持:框架支持视觉和文本领域的攻击,涵盖了多种数据集和模型架构。
  • 高度可配置:通过 hydra 配置语法,用户可以灵活地调整攻击和场景的参数。
  • 性能优化:尽管优化攻击计算密集,但框架支持 CPU 和 GPU 运行,并建议使用 GPU 以提高效率。

项目及技术应用场景

Breaching 框架主要应用于以下场景:

  • 隐私研究:研究人员可以使用该框架评估联邦学习中的隐私泄露风险,探索不同攻击方法的效果。
  • 安全测试:开发者在部署联邦学习系统前,可以使用 Breaching 进行安全测试,评估系统的隐私保护能力。
  • 防御策略开发:通过模拟攻击,开发者可以开发和测试针对隐私泄露的防御策略。

项目特点

  • 最新研究集成:Breaching 集成了最新的隐私攻击研究成果,如“Robbing The Fed”和“Decepticons”。
  • 多数据集支持:框架支持多种数据集,包括 ImageNet、CIFAR10、CIFAR100 等,适用于不同的应用场景。
  • 灵活的配置:通过 hydra 配置语法,用户可以轻松地调整攻击和场景的参数,实现高度定制化。
  • 开源社区支持:项目鼓励社区贡献,用户可以提交新的攻击方法或使用场景,共同完善框架。

总结

Breaching 是一个功能强大且灵活的联邦学习隐私攻击框架,适用于研究人员、开发者和安全测试人员。通过模块化的设计和多领域的支持,Breaching 为用户提供了一个全面的工具,用于评估和提升联邦学习系统的隐私保护能力。无论你是想深入研究隐私攻击,还是想测试和提升系统的安全性,Breaching 都是一个值得尝试的开源项目。

立即访问 Breaching GitHub 仓库,开始你的隐私攻击研究之旅吧!

breaching Breaching privacy in federated learning scenarios for vision and text breaching 项目地址: https://gitcode.com/gh_mirrors/br/breaching

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋泉律Samson

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值