Flask-Pydantic 项目教程
flask-pydantic项目地址:https://gitcode.com/gh_mirrors/fl/flask-pydantic
项目介绍
Flask-Pydantic 是一个 Flask 扩展,用于将 Pydantic 库集成到 Flask 应用中。Pydantic 是一个基于 Python 类型提示的数据验证和设置库,而 Flask 是一个轻量级的 Web 框架。通过 Flask-Pydantic,开发者可以轻松地在 Flask 应用中使用 Pydantic 模型进行请求数据验证和响应格式化。
项目快速启动
安装
首先,确保你已经安装了 Python 3.7 或更高版本。然后,使用以下命令安装 Flask-Pydantic:
pip install Flask-Pydantic
创建一个简单的 Flask 应用
以下是一个简单的 Flask 应用示例,展示了如何使用 Flask-Pydantic 进行请求数据验证:
from flask import Flask, request
from flask_pydantic import validate
from pydantic import BaseModel
app = Flask(__name__)
class User(BaseModel):
username: str
email: str
@app.route('/user', methods=['POST'])
@validate()
def create_user(user: User):
return {
"message": "User created successfully",
"user": user.dict()
}
if __name__ == '__main__':
app.run(debug=True)
运行应用
保存上述代码到一个文件,例如 app.py
,然后在终端中运行:
python app.py
现在,你可以通过发送一个 POST 请求到 http://127.0.0.1:5000/user
来测试这个应用,请求体中包含用户数据:
{
"username": "example",
"email": "example@example.com"
}
应用案例和最佳实践
数据验证
Flask-Pydantic 的主要用途之一是数据验证。通过定义 Pydantic 模型,可以确保接收到的数据符合预期的格式和类型。
class User(BaseModel):
username: str
email: str
age: int
@app.route('/user', methods=['POST'])
@validate()
def create_user(user: User):
return {
"message": "User created successfully",
"user": user.dict()
}
响应格式化
Pydantic 模型也可以用于格式化响应数据,确保返回的数据结构一致且符合预期。
@app.route('/user/<int:user_id>', methods=['GET'])
def get_user(user_id):
# 假设从数据库中获取用户数据
user_data = {
"username": "example",
"email": "example@example.com",
"age": 25
}
user = User(**user_data)
return user.dict()
典型生态项目
Flask-SQLAlchemy
Flask-SQLAlchemy 是一个 Flask 扩展,用于集成 SQLAlchemy,一个强大的 ORM 库。结合 Flask-Pydantic,可以实现从数据库到 API 的数据无缝转换和验证。
from flask_sqlalchemy import SQLAlchemy
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///example.db'
db = SQLAlchemy(app)
class UserModel(db.Model):
id = db.Column(db.Integer, primary_key=True)
username = db.Column(db.String(80), unique=True, nullable=False)
email = db.Column(db.String(120), unique=True, nullable=False)
db.create_all()
@app.route('/user', methods=['POST'])
@validate()
def create_user(user: User):
new_user = UserModel(username=user.username, email=user.email)
db.session.add(new_user)
db.session.commit()
return {
"message": "User created successfully",
"user": user.dict()
}
通过以上示例,你可以看到 Flask-Pydantic 如何与 Flask-SQLAlchemy 结合
flask-pydantic项目地址:https://gitcode.com/gh_mirrors/fl/flask-pydantic