- 博客(736)
- 收藏
- 关注
原创 2025亚太杯中文赛A题《农业灌溉系统优化》问题四-长期灌溉调度与系统适应性
在完成灌溉系统布设后,需进一步验证其在 2021年5月1日至7月31日 各作物完整生长期内,能否持续满足不同阶段的灌溉需求(播种期、开花期、成熟期水量不同)。如原系统无法满足,需调整管道布线或储水罐容量配置,并对每月水量及水源比例进行规划,输出表5。
2025-07-11 18:34:30
13
原创 2025亚太杯中文赛A题《农业灌溉系统优化》第三问:应急旱灾情况下的系统鲁棒性分析
考虑到农场依赖河流作为主要水源,但在旱灾年份河水供给能力下降(仅为平时的80%),必须分析当前设计的灌溉系统在极端天气下的鲁棒性,并制定储水罐的应急水源储备策略,评估在不同旱灾概率下,能否满足作物的存活或正常生长需求。
2025-07-11 18:31:02
12
原创 2025亚太杯中文赛A题《农业灌溉系统优化》第二问:最小成本灌溉系统设计
本问题要求在不考虑作物生长时期水量差异的前提下,仅以土壤湿度保持≥0.22(即作物存活)为约束条件,综合考虑引水管建设成本与储水罐布设成本,为1公顷正方形农场设计一套最低成本的灌溉系统方案。
2025-07-11 18:28:07
25
原创 2025亚太杯中文赛A题《农业灌溉系统优化》第一问:土壤湿度预测模型建立
农业灌溉管理中,土壤湿度(5cm_SM) 是影响灌溉决策的关键因子,直接关系到作物的生长状态。题目要求我们构建一个数据驱动的预测模型,利用气象数据(如温度、气压、风速、降水量等)来预测某一时刻的土壤湿度值,从而为精准灌溉提供决策支持。我们需要基于提供的历史气象数据与湿度观测数据进行建模,并用该模型对表2中所给不同时段的气象条件下的土壤湿度进行预测。
2025-07-11 18:24:25
48
原创 2025亚太杯中文赛A题《农业灌溉系统优化》 的完整解题思路
农业灌溉管理中,土壤湿度(5cm_SM) 是影响灌溉决策的关键因子,直接关系到作物的生长状态。题目要求我们构建一个数据驱动的预测模型,利用气象数据(如温度、气压、风速、降水量等)来预测某一时刻的土壤湿度值,从而为精准灌溉提供决策支持。我们需要基于提供的历史气象数据与湿度观测数据进行建模,并用该模型对表2中所给不同时段的气象条件下的土壤湿度进行预测。
2025-07-11 18:20:56
34
原创 2025亚太杯中文赛A题建模详解|农业灌溉系统优化模型+完整代码+保姆级教程
在本题中,我们围绕农业灌溉系统的优化,逐步构建了涵盖气象预测、系统布设、旱灾应对与长期调度的完整建模体系。第一问通过回归模型实现土壤湿度的气象预测,为后续灌溉调度提供决策依据。第二问基于作物“存活”需求,在降水数据与湿度动态模拟的基础上,设计了最低成本的喷头布点与引水/储水系统。第三问引入旱灾情景,评估系统鲁棒性,并通过应急储水比例与灾害概率的关系分析,提出了储备水源的合理配置建议。第四问则扩展至作物完整生长期,结合不同阶段的需水差异,检验原有系统能否支撑作物“正常生长”,并通过灌溉方案可视化与系统调整,实
2025-07-11 18:09:36
144
原创 2025亚太杯(中文赛)数学建模B题全攻略|完整建模思路+代码实现+保姆级教程【疾病的预测与大数据分析】
这次建模工作围绕中风、心脏病和肝硬化三大疾病,系统完成了数据预处理、缺失值处理、类别编码和数值标准化,并通过统计描述与多样化可视化分析探索了各疾病的关键影响因素。在此基础上,分别构建了针对三种疾病的二分类预测模型,进行了模型训练、性能评估和特征重要性分析,同时提出了包括调参、样本平衡和模型融合等改进策略。进一步整合多数据源,分析了疾病的共病情况,利用统计、随机森林、贝叶斯网络和关联规则挖掘等方法深入探讨了疾病间的关系与共病风险。最终结合研究成果,撰写了面向WHO的预防建议报告,提出了健康生活方式推广、慢病早
2025-07-11 17:06:37
222
原创 2025亚太杯(中文赛)数学建模A题全攻略|完整建模思路+代码实现+保姆级教程
在本题中,我们围绕农业灌溉系统的优化,逐步构建了涵盖气象预测、系统布设、旱灾应对与长期调度的完整建模体系。第一问通过回归模型实现土壤湿度的气象预测,为后续灌溉调度提供决策依据。第二问基于作物“存活”需求,在降水数据与湿度动态模拟的基础上,设计了最低成本的喷头布点与引水/储水系统。第三问引入旱灾情景,评估系统鲁棒性,并通过应急储水比例与灾害概率的关系分析,提出了储备水源的合理配置建议。第四问则扩展至作物完整生长期,结合不同阶段的需水差异,检验原有系统能否支撑作物“正常生长”,并通过灌溉方案可视化与系统调整,实
2025-07-11 16:58:19
331
原创 飞算JavaAI实战:用自然语言重构Java开发流水线,效率飙升300%!
“项目经理又改需求了!”——这句话引发的恐惧,往往源于背后海量的代码改动。作为Java工程师,我们渴望将创造力倾注于系统设计,而非淹没在接口适配、字段校验和SQL编写的重复劳动中。今天,我将通过6个真实代码场景,揭秘如何用飞算JavaAI将“需求→代码→测试”的全流程效率提升3倍以上,释放你的技术潜能!
2025-07-11 16:43:12
662
原创 面向智能交通系统的改进YOLOv8多目标车辆检测模型
摘要: 本文针对复杂交通环境中的车辆检测挑战,提出改进YOLOv8的鲁棒性方案。通过分析多尺度检测、动态遮挡和极端光照等核心问题,设计了多尺度特征融合架构、抗遮挡注意力机制(OAAttention)和光照鲁棒数据增强策略。实验采用融合数据集(BDD100K、UA-DETRAC等),改进后模型在mAP@0.5提升5.3%,小目标召回率提高11.1%,遮挡场景mAP提升8.5%,同时保持128FPS的实时性。研究为智能交通系统提供了有效的工程实践方案,包括TensorRT部署优化和在线困难样本挖掘策略。结果表明
2025-07-09 22:39:34
354
原创 SpringBoot开源项目系列 | 基于SpringBoot与MySQL的商业辅助决策系统实现(文末附源码)
随着互联网技术的不断发展,商业决策支持系统在各行各业中扮演着越来越重要的角色。尤其在企业管理中,一个有效的辅助决策系统能够为管理者提供实时的数据分析和决策支持,从而提升企业的运营效率与盈利能力。本系统利用SpringBoot框架结合MySQL数据库,开发了一个简易的商业辅助决策系统,涵盖了公告管理、收支管理、销售订单管理、薪资管理、员工管理等多个功能模块。
2025-07-06 16:18:38
871
原创 飞算JavaAI重构企业级开发-3天交付金融级系统,漏洞率下降90%的终极实践【Java项目实战】
在本次实践中,我们借助飞算JavaAI,仅用3天时间就成功构建并交付了一个具备金融业务流程、权限管理、数据风控等复杂模块的系统,系统初测漏洞率相比传统项目下降超过90%。这一成果不仅验证了AI驱动的开发模式的可行性,更为金融级系统的敏捷构建提供了全新解决方案。
2025-07-01 10:50:31
2314
原创 华为云Flexus+DeepSeek征文|保姆级教学构建股票投资顾问智能体AI Agent
借助华为云Flexus平台与DeepSeek大模型强大的自然语言理解与多模态处理能力,我们可以快速搭建一款“保姆级”的股票投资顾问AI Agent —— 它不仅能够实时分析市场动态,还能用通俗易懂的语言解释复杂的技术指标,帮助用户建立对行情的直观理解。同时,通过历史数据回测功能,用户可验证自己的交易策略效果,避免盲目入场
2025-06-30 23:47:56
627
原创 华为云Flexus+DeepSeek征文|构建程序员的智能体编程导师「CodeWhisperer」
借助华为云 **Flexus ** 与 DeepSeek 编程能力大模型,我们打造了智能体编程导师「CodeWhisperer」。它不仅能实时解析用户提出的编程问题,还能以对话方式讲解核心概念、生成高质量的 Python / Java 等语言代码片段,并协助进行调试与优化。无论是入门教学、算法训练还是项目实战,它都能像一位贴身导师一样,随时提供精准指导。
2025-06-30 23:40:35
931
原创 华为云Flexus+DeepSeek征文|手把手教你部署辩论对手「ArgueMaster」智能体开发
ArgueMaster旨在扮演多种立场角色(如环保主义者 vs 企业家、科技乐观者 vs 隐私保守派等),与用户就社会议题、科技伦理、商业模式等展开结构化对话辩论。智能体具备自动生成反方论点、评估说服力、分析逻辑漏洞等功能,打破传统“单向问答”的限制,向“交互思维训练”迈进。通过该智能体,我们希望推动LLM在批判性思维训练、观点对抗生成等方向的落地探索,并为未来AI辅助教育、法律论证、政策制定等场景提供通用型模型能力参考。
2025-06-30 22:34:22
929
原创 华为云Flexus+DeepSeek征文|创意写作助手「InkFlow」智能体构造过程记录
本项目构建了一款名为「InkFlow」的创意写作助手智能体。它不仅能够理解用户的写作意图,还能协助进行灵感生成、标题撰写、结构规划、文风调整乃至全文续写,致力于打造一个真正“懂你所写”的智能创作伙伴。通过图形化流程编排、意图触发机制与多轮交互对话能力,「InkFlow」在Flexus平台上实现了从构想到成文的完整闭环,极大地激发了创作者的创作潜能。
2025-06-30 22:13:47
741
原创 华为云Flexus+DeepSeek征文|基于华为快速搭建Dify LLM应用开发平台开发历史人物模拟器「TimeWalker」智能体
「TimeWalker」智能体应运而生——这是一个以历史人物模拟为核心、融合知识问答与语义生成的AI智能体。通过华为云提供的Flexus一站式开发环境与Dify平台的低代码/零代码部署能力,开发者可高效构建具备高拟真历史对话能力的智能体系统,实现“与孔子论礼”、“向爱因斯坦提问相对论”、“和李时珍探讨草药”等丰富交互场景。
2025-06-30 21:59:06
669
原创 华为云Flexus+DeepSeek征文| 虚拟心理医生「心语」智能体构建
本项目依托华为云Flexus应用开发平台与DeepSeek大模型推理服务,构建了名为**「心语」**的虚拟心理医生智能体,旨在打造一个专业、亲和、稳定的心理对话伙伴,帮助用户在情绪低落、压力过大、孤独无助时找到一个可以“倾听与理解”的数字朋友。
2025-06-30 21:47:27
738
原创 华为云Flexus+DeepSeek征文|梦境解析师智能体AI Agent【仅供娱乐】
借助Dify平台的多轮对话与提示词工程能力,结合华为云MaaS平台提供的大模型推理服务(如DeepSeek等中文对齐大模型),本项目将打造一个支持自然语言输入梦境内容、输出象征含义、潜意识解读与调适建议的AI Agent。它不仅能成为用户日常梦境记录与解读的工具,还能辅助用户识别情绪状态、挖掘深层心理需求,提供一种创新性的智能心理支持方式。
2025-06-29 21:05:46
704
原创 华为云Flexus+DeepSeek征文|基于华为云MaaS平台DeepSeek大模型推理服务搭建自我成长顾问导师智能体
华为云MaaS(Model-as-a-Service)平台为大模型的推理与应用提供了稳定、高效、安全的基础支撑。结合 DeepSeek 等先进的中文对齐大模型能力,可以实现对用户语言的精准理解、目标导向的反馈生成以及知识图谱辅助的成长建议推理。通过将该模型能力与多轮对话智能体框架相结合,我们可以构建一个具备目标引导、策略规划、心理激励三大核心能力的 “自我成长顾问导师智能体”。
2025-06-29 20:32:27
2900
原创 华为云Flexus+DeepSeek征文|基于Dify构建心理调适专家智能体
摘要:基于Dify平台和华为云Flexus云服务,构建了一个心理调适专家智能体解决方案。该项目旨在利用大语言模型技术,提供全天候、低成本的心理健康服务,缓解全球9亿人面临的心理健康问题。通过华为云一键部署Dify平台,结合DeepSeek-V3/R1商用服务,实现了包含情感识别、心理陪伴、疏导建议等功能的工作流。该智能体采用模块化设计,包括情感共鸣、问题定位等技术环节,最终成功部署为可在线访问的心理调适应用,有效降低了专业心理咨询的获取门槛。
2025-06-29 18:41:12
1132
原创 华为云Flexus+DeepSeek征文|基于华为云Flexus云服务的Dify一键部署:情感倾诉树洞AI Agent搭建流程记录
在当今快节奏、高压力的社会环境下,越来越多的人在日常生活中承受着来自学业、职场、人际关系以及情感生活等多方面的压力。然而,并非每个人都有适合的倾诉对象或心理疏导渠道,这也让情绪的积压成为普遍存在的问题。为此,情感倾诉类的AI应用应运而生,成为用户释放情绪、寻求安慰的重要途径。相比传统人工服务,AI树洞助手可提供全天候在线陪伴、情绪识别与反馈、共情式对话回应,在保证隐私安全的前提下,给予用户精神层面的支持。
2025-06-29 17:29:01
1030
原创 华为云Flexus+DeepSeek征文|基于华为云的快速搭建Dify-LLM应用开发平台快速搭建:星座运势分析师AI Agent
通过华为云的强大计算能力和灵活的云服务支持,开发者可以轻松搭建一个高效的星座运势分析平台。AI Agent能够自动分析用户的星座信息,并生成个性化的运势报告,涵盖各个维度,如爱情、事业、财运等。无论是为用户提供每日简短的星座运势预测,还是更长周期的综合运势分析,该平台都能够提供实时、精确的服务,帮助用户作出更好的生活决策。
2025-06-28 13:19:54
3134
原创 华为云Flexus+DeepSeek征文|基于华为云Flexus云服务的Dify一键部署方案:游戏攻略助手AI Agent
在这种背景下,基于华为云Flexus云服务的Dify一键部署方案应运而生,它通过人工智能技术为玩家提供实时、个性化的游戏攻略和技巧。这个AI Agent不仅能根据玩家的游戏进度提供针对性的解决方案,还能通过与玩家的互动,分享实用的游戏心得、技巧和最新的更新信息,帮助玩家解决遇到的难题。此外,Dify智能体还可以根据玩家的喜好和需求,推荐相关的游戏内容,提升玩家的游戏体验。
2025-06-28 13:07:23
4397
原创 华为云Flexus+DeepSeek征文|基于华为云Flexus云服务的Dify一键部署方案实现:阅读推荐官AI Agent
传统的书籍推荐方式往往依赖于固定的分类和关键词匹配,缺乏个性化与智能化的推荐机制。为了更好地帮助用户发掘感兴趣的书籍内容并提供更加精准的阅读推荐,华为云Flexus云服务基于先进的人工智能技术,推出了Dify一键部署方案。该方案通过构建智能推荐系统,能够结合用户的历史阅读记录、兴趣标签以及行为分析,为每个用户量身定制个性化的书籍推荐列表。
2025-06-28 12:54:33
4013
1
原创 华为云Flexus+DeepSeek征文|基于华为云Flexus云服务的Dify技术解决方案搭建育儿经验知识库智能体AI Agent
在现代社会,随着家庭结构和社会环境的变化,新手父母面临着前所未有的育儿挑战。从婴儿护理到幼儿教育,再到亲子关系的培养,父母在育儿过程中需要不断学习和适应新的知识和技能。然而,由于信息的碎片化、育儿经验的个体差异以及工作生活压力的影响,很多父母往往感到困惑和焦虑,难以获取到及时、专业且个性化的育儿指导。
2025-06-27 17:27:43
2789
原创 华为云Flexus+DeepSeek征文|基于华为云Flexus云服务的Dify一键部署方案搭建家庭健康顾问AI Agent
在当今快速发展的数字化时代,健康管理已经成为了人们日常生活中越来越重要的一部分。尤其是在家庭健康方面,很多家庭成员面临着健康数据分散、难以管理和及时监控的问题。为了解决这一问题,基于华为云Flexus云服务的Dify一键部署方案应运而生。
2025-06-27 17:00:52
9402
原创 华为云Flexus+DeepSeek征文|基于华为云Flexus云服务的Dify一键部署方案【小白入门指南】
在如今的数字化转型浪潮中,企业和开发者面临着越来越复杂的技术挑战,尤其是在智能应用和人工智能的快速发展中。为了提高工作效率、节省时间和成本,自动化、智能化部署方案逐渐成为了企业数字化转型的核心需求之一。华为云Flexus云服务凭借其强大的计算能力、灵活的资源调度和高可靠性,为企业提供了一个高效、可扩展的云平台。特别是在人工智能领域,华为云通过与Dify平台的结合,推出了“一键部署”方案,使得AI应用的部署变得更加简单和高效。
2025-06-27 15:51:13
9025
原创 实现一个基于时间戳的版本控制系统,用于存储文件的多个版本【基于python实现】
我们将创建一个系统,它允许用户将文件的多个版本保存到指定的目录中,并通过时间戳来标识每个版本。这样,用户可以随时查看、恢复或删除文件的历史版本。文件的版本保存:基于文件的修改时间创建时间戳,并将文件保存为不同版本。版本的查看:查看当前目录下的所有版本,基于时间戳排序。版本的恢复:恢复某一时间点的文件版本。
2025-03-19 22:14:56
1528
40
原创 设计一个分布式缓存系统,支持数据持久化和数据一致性【基于Python实现】
分布式架构:缓存数据分布在多个节点上,以应对大规模数据存储。数据持久化:确保即使系统崩溃,缓存的数据也不会丢失。数据一致性:确保缓存数据在多个节点之间保持一致性。高可用性:系统具备高可用性,能够容忍部分节点宕机。Redis:用作缓存引擎,支持高效的读写和持久化。Pythonthreading模块:用于实现节点之间的并发操作。RocksDB:作为数据持久化存储层,用于保存持久化数据。
2025-03-19 22:04:09
785
6
原创 提升大数据文件合并效率:基于Python的多线程与去重优化【合并多个已排序的文件数据算法实现】
合并多个已排序文件数据的核心问题是,如何在保证时间效率的情况下,将多个排序好的数据合并为一个全局有序的数据流。
2025-03-19 15:13:05
1184
1
原创 基于LRU算法的高效缓存管理与Python实现【LRU缓存淘汰策略的原理与应用】
虽然 LRU 是一种常见的缓存淘汰策略,但它并不适用于所有场景。根据应用的需求,可以根据具体情况修改缓存淘汰的规则。例如,我们可以基于访问频率、数据大小等因素来设计更复杂的缓存策略。除了基于使用频率和时间顺序来淘汰缓存外,还可以根据自定义的优先级来决定缓存中的数据。例如,可以为某些数据分配较高的优先级,使其更不容易被淘汰。return -1# 选择最小优先级的元素进行淘汰LRU 缓存算法在很多领域中都有着重要的应用,尤其是在需要频繁访问数据的场景中,通过高效的缓存淘汰策略,能够显著提升系统的性能。
2025-03-19 14:57:50
1515
原创 基于YOLOv8模型的知识蒸馏技术研究与优化
YOLOv8(You Only Look Once Version 8)作为一种广泛应用的目标检测算法,其精度和速度已在许多场景中得到验证。然而,随着网络的不断扩展,YOLOv8的模型往往较大,计算资源消耗也较高,这对边缘设备和实时检测任务构成挑战。因此,如何在保持高精度的同时,提升推理速度,成为了一个重要课题。
2025-02-18 09:30:00
1228
11
原创 利用Haar小波下采样替代传统卷积下采样在YOLOv8中的应用
在YOLOv8的传统卷积神经网络架构中,下采样通常是通过步长(stride)为2的卷积操作来实现的。这种方法虽简单且高效,但由于其局部感知能力和固定的采样方式,可能会丢失一些细节信息,尤其是在目标检测中对于小物体或细节的捕捉能力有限。Haar小波变换是一种常用的数学工具,广泛应用于图像压缩、去噪等领域。其特点在于通过分解图像为不同频率的分量来提取图像的细节信息。本文提出将Haar小波下采样(HWD, Haar Wavelet Downsampling)应用于YOLOv8中,替代传统的卷积下采样。
2025-02-18 06:15:00
1809
1
原创 HATHead: 面向小目标检测的高效混合注意力检测头在 YOLOv8 中的应用
YOLOv8是目前目标检测领域的重要基准之一,但在高分辨率目标检测任务(如卫星图像、医学影像、遥感等)中,其检测能力仍然存在瓶颈。为了提升YOLOv8在超分辨率场景下的检测精度,我们提出了一种**混合注意力变换器检测头(Hybrid Attention Transformer Head, HATHead)**,该方法结合**卷积特征提取能力**和**变换器的全局建模能力**,专注于细节信息的保持和特征融合。
2025-02-17 00:15:00
1532
10
原创 YOLOv8 细节涨点:利用 RayTune 进行高效超参数优化的实证研究
RayTune 是基于 Ray 分布式计算框架的超参数优化库,支持多种搜索算法,如(网格搜索)、(随机搜索)、(贝叶斯优化)等。它可以高效地并行化搜索,使得超参数调优更加高效和精准。在YOLOv8的train.py训练脚本中,Ultralytics已经集成了 RayTune,我们可以通过简单的配置来调用该工具。如果想要更细粒度的控制,我们可以在 Python 代码中调用 RayTune 进行搜索。# 定义搜索空间# 训练函数。
2025-02-16 09:45:00
901
1
原创 低照度与极端天气环境中的YOLOv8优化:CPA-Enhancer网络的应用与分析
为了克服上述问题,本文提出了一种名为的网络改进方案。CPA-Enhancer通过引入链式思考机制和改进的注意力机制,有效地提升了YOLOv8在低照度和复杂天气下的表现。本文提出了针对低照度和恶劣天气条件下目标检测的YOLOv8改进方案——CPA-Enhancer链式思考网络。通过引入低照度图像增强和多尺度特征融合技术,CPA-Enhancer显著提高了YOLOv8在低光照、雾霾、雨雪等环境下的检测性能。实验结果表明,CPA-Enhancer相较于原始YOLOv8,在多个指标上都有显著的提升,尤其是在mAP。
2025-02-16 00:30:00
1247
原创 利用RayTune进行YOLOv8超参数调优的系统性方法
RayTune是一个用于超参数优化的开源框架,它可以通过分布式计算来加速搜索最优超参数。RayTune能够与多种机器学习框架兼容,包括TensorFlow、PyTorch等。在YOLOv8中,RayTune被用来调节模型的各类超参数,如学习率、批大小、优化器等,帮助我们快速找到最佳配置。通过RayTune与YOLOv8结合,我们不仅能够实现自动化的超参数调优,还可以根据实验结果对模型进行精细化的优化。
2025-02-16 00:15:00
779
原创 MobileViT增强YOLOv8:一种面向实时目标检测的轻量化方法
MobileViT是一种结合了卷积神经网络和视觉Transformer的轻量化网络架构。相比于传统的卷积神经网络,MobileViT通过引入自注意力机制(Self-Attention)来更有效地建模图像中的长程依赖。MobileViT v1首次提出时,便在保持较低计算量的同时,显著提高了性能。轻量化:比起标准的Vision Transformer,MobileViT设计了高效的模块,使得模型计算量大幅减少。自注意力机制。
2025-02-15 09:00:00
923
1
原创 优化YOLOv8的检测性能:多尺度训练、注意力机制与混合精度技术
PP-HGNetV2是一个轻量级的网络结构,设计时考虑到了性能与计算效率之间的平衡。其核心优势之一是引入了通道缩放机制,通过调整每一层卷积操作的通道数,从而有效减少计算量和内存消耗,同时确保模型的准确性。在YOLOv8的原始版本中,去除了PP-HGNetV2中的通道缩放功能,这导致模型在轻量化过程中牺牲了一定的性能。虽然YOLOv8依然可以在一些标准数据集上表现出色,但去除通道缩放后,模型的计算复杂度有所增加,且在一些复杂任务中的精度提升受到限制。
2025-02-15 00:30:00
1232
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人