TokenCut 开源项目使用教程

TokenCut 开源项目使用教程

TokenCut(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"项目地址:https://gitcode.com/gh_mirrors/to/TokenCut

1. 项目的目录结构及介绍

TokenCut 项目的目录结构如下:

TokenCut/
├── datasets/
│   ├── dino/
│   └── examples/
├── unsupervised_saliency_detection/
├── weakly_supervised_detection/
├── DOWNLOAD_DATA.md
├── LICENSE
├── README.md
├── __init__.py
├── datasets.py
├── inference_demo.ipynb
├── main_tokencut.py
├── networks.py
├── object_discovery.py
├── requirements.txt
└── visualizations.py

目录介绍

  • datasets/: 包含数据集相关文件,如 dinoexamples
  • unsupervised_saliency_detection/: 无监督显著性检测相关文件。
  • weakly_supervised_detection/: 弱监督对象检测相关文件。
  • DOWNLOAD_DATA.md: 数据下载指南。
  • LICENSE: 项目许可证。
  • README.md: 项目介绍和使用说明。
  • __init__.py: 初始化文件。
  • datasets.py: 数据集处理脚本。
  • inference_demo.ipynb: 推理演示 Jupyter Notebook。
  • main_tokencut.py: 项目主启动文件。
  • networks.py: 网络模型定义。
  • object_discovery.py: 对象发现相关脚本。
  • requirements.txt: 项目依赖列表。
  • visualizations.py: 可视化相关脚本。

2. 项目的启动文件介绍

项目的启动文件是 main_tokencut.py。该文件包含了项目的主要逻辑和启动命令。

启动命令示例

python main_tokencut.py --dataset VOC07 --set trainval

主要功能

  • 加载数据集
  • 应用 TokenCut 算法进行对象发现
  • 计算评估指标

3. 项目的配置文件介绍

项目的主要配置文件是 requirements.txt,该文件列出了项目运行所需的所有依赖包。

依赖包示例

torch==1.7.1
numpy
matplotlib
...

安装依赖

使用以下命令安装项目依赖:

pip install -r requirements.txt

以上是 TokenCut 开源项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。

TokenCut(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"项目地址:https://gitcode.com/gh_mirrors/to/TokenCut

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

董斯意

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值