MIMO-OFDM无线通信MATLAB开源项目常见问题解决方案

MIMO-OFDM无线通信MATLAB开源项目常见问题解决方案

MIMO-OFDM-Wireless-Communications-with-MATLAB MATLAB Code for MIMO-OFDM Wireless Communications with MATLAB | MIMO-OFDM无线通信技术及MATLAB实现 MIMO-OFDM-Wireless-Communications-with-MATLAB 项目地址: https://gitcode.com/gh_mirrors/mi/MIMO-OFDM-Wireless-Communications-with-MATLAB

一、项目基础介绍

本项目是一个关于MIMO-OFDM(多输入多输出-正交频分复用)无线通信技术的MATLAB实现。MIMO-OFDM技术是一种广泛应用于无线通信领域的技术,能够有效提高通信系统的容量和频谱效率。本项目提供了丰富的MATLAB代码,用于模拟和分析MIMO-OFDM系统的性能。

主要编程语言:MATLAB

二、新手常见问题及解决步骤

问题一:如何运行项目中的MATLAB代码?

解决步骤:

  1. 确保已安装MATLAB软件。
  2. 下载项目源代码至本地电脑。
  3. 在MATLAB中,打开下载的文件夹,找到主程序文件(通常是.m文件)。
  4. 在MATLAB命令窗口中运行主程序文件。

问题二:如何在项目中添加自己的代码或修改现有代码?

解决步骤:

  1. 在项目文件夹中创建一个新的MATLAB脚本文件或函数文件。
  2. 根据需要编写代码,并保存文件。
  3. 在主程序中调用新添加的脚本或函数。
  4. 如果需要修改现有代码,直接在对应的.m文件中进行更改,并保存。

问题三:遇到运行错误或代码调试问题时怎么办?

解决步骤:

  1. 仔细阅读错误信息,定位错误发生的位置。
  2. 查看错误提示,理解错误原因。
  3. 根据错误类型,检查代码中的语法错误、变量类型、函数调用等。
  4. 可以在MATLAB中使用debbug命令进行调试,逐步执行代码并观察变量值。
  5. 如果遇到难以解决的问题,可以参考项目文档或者在线MATLAB社区寻求帮助。

以上是本项目的新手常见问题及解决步骤,希望对使用者有所帮助。在使用过程中,遇到任何其他问题,也可以通过查看项目文档和参考MATLAB官方文档来寻找答案。

MIMO-OFDM-Wireless-Communications-with-MATLAB MATLAB Code for MIMO-OFDM Wireless Communications with MATLAB | MIMO-OFDM无线通信技术及MATLAB实现 MIMO-OFDM-Wireless-Communications-with-MATLAB 项目地址: https://gitcode.com/gh_mirrors/mi/MIMO-OFDM-Wireless-Communications-with-MATLAB

作者: Yong Soo Cho 目录 Preface. Limits of Liability and Disclaimer of Warranty of Software. 1 The Wireless Channel: Propagation and Fading. 1.1 Large-Scale Fading. 1.1.1 General Path Loss Model. 1.1.2 Okumura/Hata Model. 1.1.3 IEEE 802.16d Model. 1.2 Small-Scale Fading. 1.2.1 Parameters for Small-Scale Fading. 1.2.2 Time-Dispersive vs. Frequency-Dispersive Fading. 1.2.3 Statistical Characterization and Generation of Fading Channel. 2 SISO Channel Models. 2.1 Indoor Channel Models. 2.1.1 General Indoor Channel Models. 2.1.2 IEEE 802.11 Channel Model. 2.1.3 Saleh-Valenzuela (S-V) Channel Model. 2.1.4 UWB Channel Model. 2.2 Outdoor Channel Models. 2.2.1 FWGN Model. 2.2.2 Jakes Model. 2.2.3 Ray-Based Channel Model. 2.2.4 Frequency-Selective Fading Channel Model. 2.2.5 SUI Channel Model. 3 MIMO Channel Models. 3.1 Statistical MIMO Model. 3.1.1 Spatial Correlation. 3.1.2 PAS Model. 3.2 I-METRA MIMO Channel Model. 3.2.1 Statistical Model of Correlated MIMO Fading Channel. 3.2.2 Generation of Correlated MIMO Channel Coefficients. 3.2.3 I-METRA MIMO Channel Model. 3.2.4 3GPP MIMO Channel Model. 3.3 SCM MIMO Channel Model. 3.3.1 SCM Link-Level Channel Parameters. 3.3.2 SCM Link-Level Channel Modeling. 3.3.3 Spatial Correlation of Ray-Based Channel Model. 4 Introduction to OFDM. 4.1 Single-Carrier vs. Multi-Carrier Transmission. 4.1.1 Single-Carrier Transmission. 4.1.2 Multi-Carrier Transmission. 4.1.3 Single-Carrier vs. Multi-Carrier Transmission. 4.2 Basic Principle of OFDM. 4.2.1 OFDM Modulation and Demodulation. 4.2.2 OFDM Guard Interval. 4.2.3 OFDM Guard Band. 4.2.4 BER of OFDM Scheme. 4.2.5 Water-Filling Algorithm for Frequency-Domain Link Adaptation. 4.3 Coded OFDM. 4.4 OFDMA: Multiple Access Extensions of OFDM. 4.4.1 Resource Allocation – Subchannel Allocation Types. 4.4.2 Resource Allocation – Subchannelization. 4.5 Duplexing. 5 Synchronization for OFDM. 5.1 Effect of STO. 5.2 Effect of CFO. 5.2.1 Effect of Integer Carrier Frequency Offset (IFO). 5.2.2 Effect of Fractional Carrier Frequency Offset (FFO). 5.3 Estimation Techniques for STO. 5.3.1 Time-Domain Estimation Techniques for STO. 5.3.2 Frequency-Domain Estimation Techniques for STO. 5.4 Estimation Techniques for CFO. 5.4.1 Time-Domain Estimation Techniques for CFO. 5.4.2 Frequency-Domain Estimation Techniques for CFO. 5.5 Effect of Sampling Clock Offset. 5.5.1 Effect of Phase Offset in Sampling Clocks. 5.5.2 Effect of Frequency Offset in Sampling Clocks. 5.6 Compensation for Sampling Clock Offset. 5.7 Synchronization in Cellular Systems. 5.7.1 Downlink Synchronization. 5.7.2 Uplink Synchronization. 6 Channel Estimation. 6.1 Pilot Structure. 6.1.1 Block Type. 6.1.2 Comb Type. 6.1.3 Lattice Type. 6.2 Training Symbol-Based Channel Estimation. 6.2.1 LS Channel Estimation. 6.2.2 MMSE Channel Estimation. 6.3 DFT-Based Channel Estimation. 6.4 Decision-Directed Channel Estimation. 6.5 Advanced Channel Estimation Techniques. 6.5.1 Channel Estimation Using a Superimposed Signal. 6.5.2 Channel Estimation in Fast Time-Varying Channels. 6.5.3 EM Algorithm-Based Channel Estimation. 6.5.4 Blind Channel Estimation. 7 PAPR Reduction. 7.1 Introduction to PAPR. 7.1.1 Definition of PAPR. 7.1.2 Distribution of OFDM Signal. 7.1.3 PAPR and Oversampling. 7.1.4 Clipping and SQNR. 7.2 PAPR Reduction Techniques. 7.2.1 Clipping and Filtering. 7.2.2 PAPR Reduction Code. 7.2.3 Selective Mapping. 7.2.4 Partial Transmit Sequence. 7.2.5 Tone Reservation. 7.2.6 Tone Injection. 7.2.7 DFT Spreading. 8 Inter-Cell Interference Mitigation Techniques. 8.1 Inter-Cell Interference Coordination Technique. 8.1.1 Fractional Frequency Reuse. 8.1.2 Soft Frequency Reuse. 8.1.3 Flexible Fractional Frequency Reuse. 8.1.4 Dynamic Channel Allocation. 8.2 Inter-Cell Interference Randomization Technique. 8.2.1 Cell-Specific Scrambling. 8.2.2 Cell-Specific Interleaving. 8.2.3 Frequency-Hopping OFDMA. 8.2.4 Random Subcarrier Allocation. 8.3 Inter-Cell Interference Cancellation Technique. 8.3.1 Interference Rejection Combining Technique. 8.3.2 IDMA Multiuser Detection. 9 MIMO: Channel Capacity. 9.1 Useful Matrix Theory. 9.2 Deterministic MIMO Channel Capacity. 9.2.1 Channel Capacity when CSI is Known to the Transmitter Side. 9.2.2 Channel Capacity when CSI is Not Available at the Transmitter Side. 9.2.3 Channel Capacity of SIMO and MISO Channels. 9.3 Channel Capacity of Random MIMO Channels. 10 Antenna Diversity and Space-Time Coding Techniques. 10.1 Antenna Diversity. 10.1.1 Receive Diversity. 10.1.2 Transmit Diversity. 10.2 Space-Time Coding (STC): Overview. 10.2.1 System Model. 10.2.2 Pairwise Error Probability. 10.2.3 Space-Time Code Design. 10.3 Space-Time Block Code (STBC). 10.3.1 Alamouti Space-Time Code. 10.3.2 Generalization of Space-Time Block Coding. 10.3.3 Decoding for Space-Time Block Codes. 10.3.4 Space-Time Trellis Code. 11 Signal Detection for Spatially Multiplexed MIMO Systems. 11.1 Linear Signal Detection. 11.1.1 ZF Signal Detection. 11.1.2 MMSE Signal Detection. 11.2 OSIC Signal Detection. 11.3 ML Signal Detection. 11.4 Sphere Decoding Method. 11.5 QRM-MLD Method. 11.6 Lattice Reduction-Aided Detection. 11.6.1 Lenstra-Lenstra-Lovasz (LLL) Algorithm. 11.6.2 Application of Lattice Reduction. 11.7 Soft Decision for MIMO Systems. 11.7.1 Log-Likelihood-Ratio (LLR) for SISO Systems. 11.7.2 LLR for Linear Detector-Based MIMO System. 11.7.3 LLR for MIMO System with a Candidate Vector Set. 11.7.4 LLR for MIMO System Using a Limited Candidate Vector Set. Appendix 11.A Derivation of Equation (11.23). 12 Exploiting Channel State Information at the Transmitter Side. 12.1 Channel Estimation on the Transmitter Side. 12.1.1 Using Channel Reciprocity. 12.1.2 CSI Feedback. 12.2 Precoded OSTBC. 12.3 Precoded Spatial-Multiplexing System. 12.4 Antenna Selection Techniques. 12.4.1 Optimum Antenna Selection Technique. 12.4.2 Complexity-Reduced Antenna Selection. 12.4.3 Antenna Selection for OSTBC. 13 Multi-User MIMO. 13.1 Mathematical Model for Multi-User MIMO System. 13.2 Channel Capacity of Multi-User MIMO System. 13.2.1 Capacity of MAC. 13.2.2 Capacity of BC. 13.3 Transmission Methods for Broadcast Channel. 13.3.1 Channel Inversion. 13.3.2 Block Diagonalization. 13.3.3 Dirty Paper Coding (DPC). 13.3.4 Tomlinson-Harashima Precoding. References. Index.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

咎岭娴Homer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值