Bugcrowd University 项目教程

Bugcrowd University 项目教程

bugcrowd_university Open source education content for the researcher community bugcrowd_university 项目地址: https://gitcode.com/gh_mirrors/bu/bugcrowd_university

1. 项目目录结构及介绍

Bugcrowd University 是一个开源项目,旨在帮助安全研究人员提升技能。项目的目录结构如下:

bugcrowd_university/
├── Access_control_testing/
├── An_introduction_to_Burp_Suite/
├── Burp_Suite_Advanced/
├── Cross_site_scripting/
├── GitHub_Recon/
├── How_to_make_a_good_submission/
├── Introduction/
├── Recon_and_Discovery/
├── Server_Side_Request_Forgery/
├── XML_External_Entity_Injection/
├── assets/
├── LICENSE.txt
└── README.md

目录介绍

  • Access_control_testing/: 包含访问控制测试的相关内容。
  • An_introduction_to_Burp_Suite/: 包含 Burp Suite 工具的介绍内容。
  • Burp_Suite_Advanced/: 包含 Burp Suite 高级用法的介绍内容。
  • Cross_site_scripting/: 包含跨站脚本攻击(XSS)的相关内容。
  • GitHub_Recon/: 包含 GitHub 侦察的相关内容。
  • How_to_make_a_good_submission/: 包含如何提交高质量漏洞报告的内容。
  • Introduction/: 包含项目的基本介绍内容。
  • Recon_and_Discovery/: 包含侦察和发现漏洞的相关内容。
  • Server_Side_Request_Forgery/: 包含服务器端请求伪造(SSRF)的相关内容。
  • XML_External_Entity_Injection/: 包含 XML 外部实体注入(XXE)的相关内容。
  • assets/: 包含项目所需的资源文件。
  • LICENSE.txt: 项目的许可证文件。
  • README.md: 项目的介绍和使用说明文件。

2. 项目的启动文件介绍

Bugcrowd University 项目没有传统的“启动文件”,因为它主要是一个教育内容的集合,而不是一个可执行的应用程序。每个模块都包含相关的教程、视频和实验室指南,用户可以根据自己的需求选择相应的模块进行学习。

3. 项目的配置文件介绍

Bugcrowd University 项目没有传统的“配置文件”,因为它主要是一个教育内容的集合,而不是一个需要配置的应用程序。每个模块的内容都是独立的,用户可以根据自己的需求选择相应的模块进行学习。


通过以上内容,您可以了解 Bugcrowd University 项目的目录结构、启动文件和配置文件的相关信息。希望这些内容对您有所帮助!

bugcrowd_university Open source education content for the researcher community bugcrowd_university 项目地址: https://gitcode.com/gh_mirrors/bu/bugcrowd_university

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彭桢灵Jeremy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值