开源项目 question_extractor
使用教程
项目介绍
question_extractor
是一个用于从文本数据中自动提取问题和答案的开源项目。该项目利用 OpenAI 的 API 和一些辅助工具,能够自动化地从 Markdown 文档中提取问题和答案,并生成 JSON 格式的输出文件。这大大减少了手动编写和整理问答内容的繁琐工作。
项目快速启动
安装依赖
首先,你需要克隆项目仓库并安装所需的 Python 包:
git clone https://github.com/nestordemeure/question_extractor.git
cd question_extractor
pip install -r requirements.txt
配置和运行
- 设置输入文件夹和输出路径,并确保你的 OpenAI API 密钥已设置在环境变量中。
- 运行脚本:
# 设置文件路径和 API 密钥
input_folder = 'path/to/your/markdown/files'
output_path = 'path/to/output/json/file'
openai.api_key = os.getenv("OPENAI_API_KEY")
# 运行脚本
python3 question_extractor.py
应用案例和最佳实践
应用案例
question_extractor
可以广泛应用于知识库构建、FAQ 自动化生成、教育资源整理等领域。例如,教育机构可以使用该项目自动从课程材料中提取问题和答案,以便学生进行复习和测试。
最佳实践
- 数据准备:确保输入的 Markdown 文档格式一致,问题和答案清晰明确。
- API 使用:合理设置 OpenAI API 的请求参数,以平衡准确性和成本。
- 结果验证:定期检查生成的 JSON 文件,确保提取的问题和答案准确无误。
典型生态项目
question_extractor
可以与其他开源项目结合使用,形成更强大的生态系统。以下是一些典型的生态项目:
- LangChain:用于组合和优化模型的工具,可以与
question_extractor
结合,提高问题提取的效率和准确性。 - Pandas:用于数据处理和分析的库,可以用于进一步处理和分析
question_extractor
生成的 JSON 数据。 - Jupyter Notebook:用于交互式数据分析和可视化,方便用户对提取的问题和答案进行深入分析。
通过这些生态项目的结合,question_extractor
可以更好地服务于各种复杂的应用场景。