开源项目 `question_extractor` 使用教程

开源项目 question_extractor 使用教程

question_extractorGenerate question/answer training pairs out of raw text.项目地址:https://gitcode.com/gh_mirrors/qu/question_extractor

项目介绍

question_extractor 是一个用于从文本数据中自动提取问题和答案的开源项目。该项目利用 OpenAI 的 API 和一些辅助工具,能够自动化地从 Markdown 文档中提取问题和答案,并生成 JSON 格式的输出文件。这大大减少了手动编写和整理问答内容的繁琐工作。

项目快速启动

安装依赖

首先,你需要克隆项目仓库并安装所需的 Python 包:

git clone https://github.com/nestordemeure/question_extractor.git
cd question_extractor
pip install -r requirements.txt

配置和运行

  1. 设置输入文件夹和输出路径,并确保你的 OpenAI API 密钥已设置在环境变量中。
  2. 运行脚本:
# 设置文件路径和 API 密钥
input_folder = 'path/to/your/markdown/files'
output_path = 'path/to/output/json/file'
openai.api_key = os.getenv("OPENAI_API_KEY")

# 运行脚本
python3 question_extractor.py

应用案例和最佳实践

应用案例

question_extractor 可以广泛应用于知识库构建、FAQ 自动化生成、教育资源整理等领域。例如,教育机构可以使用该项目自动从课程材料中提取问题和答案,以便学生进行复习和测试。

最佳实践

  • 数据准备:确保输入的 Markdown 文档格式一致,问题和答案清晰明确。
  • API 使用:合理设置 OpenAI API 的请求参数,以平衡准确性和成本。
  • 结果验证:定期检查生成的 JSON 文件,确保提取的问题和答案准确无误。

典型生态项目

question_extractor 可以与其他开源项目结合使用,形成更强大的生态系统。以下是一些典型的生态项目:

  • LangChain:用于组合和优化模型的工具,可以与 question_extractor 结合,提高问题提取的效率和准确性。
  • Pandas:用于数据处理和分析的库,可以用于进一步处理和分析 question_extractor 生成的 JSON 数据。
  • Jupyter Notebook:用于交互式数据分析和可视化,方便用户对提取的问题和答案进行深入分析。

通过这些生态项目的结合,question_extractor 可以更好地服务于各种复杂的应用场景。

question_extractorGenerate question/answer training pairs out of raw text.项目地址:https://gitcode.com/gh_mirrors/qu/question_extractor

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋阔奎Evelyn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值