CatVTON项目使用教程
1. 项目的目录结构及介绍
CatVTON项目的目录结构如下所示:
CatVTON
│
├── densepose
├── detectron2
├── model
├── resource
│ ├── app.py
│ ├── app_flux.py
│ ├── app_p2p.py
│ ├── eval.py
│ ├── index.html
│ ├── inference.py
│ ├── preprocess_agnostic_mask.py
│ ├── requirements.txt
│ ├── utils.py
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
└── ...
densepose
和detectron2
:这些文件夹包含了项目所依赖的代码库,用于人体姿态估计和物体检测等任务。model
:包含了项目所使用的模型文件和相关代码。resource
:包含了项目的启动文件、配置文件、评估代码和工具函数等。.gitignore
:定义了Git应该忽略的文件和文件夹。LICENSE
:项目所使用的开源许可证信息。README.md
:项目的说明文档。
2. 项目的启动文件介绍
项目的启动文件主要是resource
目录下的app.py
。这个文件是CatVTON项目的入口点,用于启动CatVTON的Gradio应用。以下是app.py
的基本使用方法:
CUDA_VISIBLE_DEVICES=0 python app.py --output_dir="resource/demo/output" --mixed_precision="bf16" --allow_tf32
该命令会启动一个Gradio应用,用于展示CatVTON模型的实时效果。--output_dir
参数指定了输出结果的保存路径,--mixed_precision
参数用于指定混合精度训练,--allow_tf32
参数允许使用TensorFlow 32位精度。
3. 项目的配置文件介绍
项目的配置文件主要集中在resource
目录下的requirements.txt
文件。这个文件列出了项目运行所需的所有Python库。要安装这些库,可以在项目根目录下运行以下命令:
pip install -r requirements.txt
此外,项目还可能涉及到其他配置文件,例如inference.py
中的参数配置,用于指定数据集路径、输出目录、数据加载器工作线程数等:
python inference.py --dataset [dresscode|vitonhd] --data_root_path <path> --output_dir <path> ...
这些配置文件和参数确保了项目可以根据用户的需求和硬件条件进行适当的调整。