CatVTON项目使用教程

CatVTON项目使用教程

CatVTON [ICLR 2025] CatVTON is a simple and efficient virtual try-on diffusion model with 1) Lightweight Network (899.06M parameters totally), 2) Parameter-Efficient Training (49.57M parameters trainable) and 3) Simplified Inference (< 8G VRAM for 1024X768 resolution). CatVTON 项目地址: https://gitcode.com/gh_mirrors/ca/CatVTON

1. 项目的目录结构及介绍

CatVTON项目的目录结构如下所示:

CatVTON
│
├── densepose
├── detectron2
├── model
├── resource
│   ├── app.py
│   ├── app_flux.py
│   ├── app_p2p.py
│   ├── eval.py
│   ├── index.html
│   ├── inference.py
│   ├── preprocess_agnostic_mask.py
│   ├── requirements.txt
│   ├── utils.py
│   └── ...
├── .gitignore
├── LICENSE
├── README.md
└── ...
  • denseposedetectron2:这些文件夹包含了项目所依赖的代码库,用于人体姿态估计和物体检测等任务。
  • model:包含了项目所使用的模型文件和相关代码。
  • resource:包含了项目的启动文件、配置文件、评估代码和工具函数等。
  • .gitignore:定义了Git应该忽略的文件和文件夹。
  • LICENSE:项目所使用的开源许可证信息。
  • README.md:项目的说明文档。

2. 项目的启动文件介绍

项目的启动文件主要是resource目录下的app.py。这个文件是CatVTON项目的入口点,用于启动CatVTON的Gradio应用。以下是app.py的基本使用方法:

CUDA_VISIBLE_DEVICES=0 python app.py --output_dir="resource/demo/output" --mixed_precision="bf16" --allow_tf32

该命令会启动一个Gradio应用,用于展示CatVTON模型的实时效果。--output_dir参数指定了输出结果的保存路径,--mixed_precision参数用于指定混合精度训练,--allow_tf32参数允许使用TensorFlow 32位精度。

3. 项目的配置文件介绍

项目的配置文件主要集中在resource目录下的requirements.txt文件。这个文件列出了项目运行所需的所有Python库。要安装这些库,可以在项目根目录下运行以下命令:

pip install -r requirements.txt

此外,项目还可能涉及到其他配置文件,例如inference.py中的参数配置,用于指定数据集路径、输出目录、数据加载器工作线程数等:

python inference.py --dataset [dresscode|vitonhd] --data_root_path <path> --output_dir <path> ...

这些配置文件和参数确保了项目可以根据用户的需求和硬件条件进行适当的调整。

CatVTON [ICLR 2025] CatVTON is a simple and efficient virtual try-on diffusion model with 1) Lightweight Network (899.06M parameters totally), 2) Parameter-Efficient Training (49.57M parameters trainable) and 3) Simplified Inference (< 8G VRAM for 1024X768 resolution). CatVTON 项目地址: https://gitcode.com/gh_mirrors/ca/CatVTON

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伍希望

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值