COCO-Style 数据集生成器 GUI 使用教程

COCO-Style 数据集生成器 GUI 使用教程

COCO-Style-Dataset-Generator-GUIA simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to use a pretrained Mask RCNN model to come up with initial segmentations. 项目地址:https://gitcode.com/gh_mirrors/co/COCO-Style-Dataset-Generator-GUI

项目介绍

COCO-Style 数据集生成器 GUI 是一个基于图形用户界面的工具,用于生成 COCO 风格的多边形掩码标注文件。该工具旨在通过提供一个简单易用的界面,帮助用户快速高效地创建标注掩码和边界框。此外,用户还可以选择使用预训练的 Mask R-CNN 模型来生成初始分割。

项目快速启动

安装

首先,确保你已经安装了 Python 环境。然后,使用以下命令安装该工具:

pip install smart-COCO-Style-Dataset-Generator-GUI

使用

安装完成后,你可以通过以下命令启动 GUI 工具:

python -m coco_dataset_generator

创建 JSON 文件

使用 GUI 工具标注完成后,可以通过以下命令创建 COCO 风格的 JSON 文件:

python -m coco_dataset_generator utils create_json_file -i background/ -c classes/products.txt -o output.json -t jpg

应用案例和最佳实践

应用案例

  1. 图像标注:在计算机视觉项目中,使用该工具进行图像标注,生成 COCO 风格的数据集,用于训练目标检测和分割模型。
  2. 数据集扩充:通过该工具快速生成标注数据,扩充现有数据集,提高模型的泛化能力。

最佳实践

  1. 批量处理:对于大量图像,建议分批次进行标注,以提高效率。
  2. 预训练模型辅助:使用预训练的 Mask R-CNN 模型生成初始分割,减少手动标注的工作量。

典型生态项目

  1. Mask R-CNN:用于生成初始分割的预训练模型。
  2. COCO API:用于加载和处理 COCO 风格数据集的官方 API。
  3. LabelImg:另一个流行的图像标注工具,支持多种标注格式。

通过以上步骤和建议,你可以快速上手并有效利用 COCO-Style 数据集生成器 GUI 工具,为你的计算机视觉项目提供高质量的标注数据。

COCO-Style-Dataset-Generator-GUIA simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to use a pretrained Mask RCNN model to come up with initial segmentations. 项目地址:https://gitcode.com/gh_mirrors/co/COCO-Style-Dataset-Generator-GUI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邵瑗跃Free

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值