NIID-Bench 开源项目使用教程

NIID-Bench 开源项目使用教程

NIID-BenchFederated Learning on Non-IID Data Silos: An Experimental Study (ICDE 2022)项目地址:https://gitcode.com/gh_mirrors/ni/NIID-Bench

1. 项目介绍

NIID-Bench 是一个用于非独立同分布(Non-IID)数据场景下联邦学习算法性能评估的开源项目。该项目实现了多种联邦学习算法(如 FedAvg、FedProx、SCAFFOLD 和 FedNova),并支持多种非独立同分布数据设置(如标签分布偏斜、特征分布偏斜和数量偏斜)。NIID-Bench 提供了多个数据集(如 MNIST、Cifar-10、Fashion-MNIST 等),帮助研究人员和开发者评估和比较不同联邦学习算法在非独立同分布数据环境下的表现。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保您的系统已安装以下依赖:

  • Python 3.6 或更高版本
  • Git

2.2 克隆项目

首先,克隆 NIID-Bench 项目到本地:

git clone https://github.com/Xtra-Computing/NIID-Bench.git
cd NIID-Bench

2.3 安装依赖

使用 pip 安装项目所需的 Python 依赖包:

pip install -r requirements.txt

2.4 运行示例

以下是一个简单的示例代码,用于运行 FedAvg 算法在 MNIST 数据集上的实验:

import niidbench

# 初始化实验配置
config = {
    'algorithm': 'FedAvg',
    'dataset': 'MNIST',
    'num_clients': 10,
    'rounds': 100,
    'local_epochs': 5,
    'batch_size': 32,
    'non_iid_type': 'label_skew',
    'non_iid_param': 0.5
}

# 运行实验
niidbench.run(config)

3. 应用案例和最佳实践

3.1 应用案例

NIID-Bench 可以应用于以下场景:

  • 学术研究:研究人员可以使用 NIID-Bench 来评估和比较不同联邦学习算法在非独立同分布数据环境下的性能。
  • 工业应用:企业可以使用 NIID-Bench 来测试和优化其联邦学习系统,以应对实际数据分布不均的问题。

3.2 最佳实践

  • 选择合适的算法:根据数据分布的特点选择合适的联邦学习算法,如在标签分布偏斜的情况下,可以选择 FedProx 或 SCAFFOLD。
  • 调整参数:根据实验结果调整算法参数,如 non_iid_paramlocal_epochs,以获得更好的性能。

4. 典型生态项目

NIID-Bench 作为一个联邦学习基准测试工具,与其他联邦学习相关的开源项目有良好的兼容性。以下是一些典型的生态项目:

  • FATE:一个开源的联邦学习框架,支持多种联邦学习算法和数据集。
  • PySyft:一个用于隐私保护机器学习的开源库,支持联邦学习和差分隐私。
  • TensorFlow Federated:TensorFlow 的联邦学习扩展,支持在分布式数据上训练模型。

通过结合这些生态项目,开发者可以构建更复杂的联邦学习系统,并进一步优化其在非独立同分布数据环境下的表现。

NIID-BenchFederated Learning on Non-IID Data Silos: An Experimental Study (ICDE 2022)项目地址:https://gitcode.com/gh_mirrors/ni/NIID-Bench

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

岑尤琪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值