NIID-Bench 使用指南

NIID-Bench 使用指南

NIID-BenchFederated Learning on Non-IID Data Silos: An Experimental Study (ICDE 2022)项目地址:https://gitcode.com/gh_mirrors/ni/NIID-Bench

本指南旨在帮助开发者和研究人员快速了解并使用 NIID-Bench,一个用于联邦学习在非独立同分布(Non-Independent and Identically Distributed,NIID)数据上的实验研究平台。通过本指南,您将熟悉项目的基本结构、关键启动文件以及配置选项。

1. 目录结构及介绍

项目根目录结构大致如下:

NIID-Bench/
│
├── configs        # 配置文件夹,包含不同实验设置的配置文件
│   ├── algorithm   # 联邦学习算法相关的配置
│   ├── data        # 数据集配置
│   └── general     # 通用配置项
├── datasets       # 数据处理逻辑或脚本,用于加载和处理不同的数据集
├── models         # 不同的模型实现,包括FedAvg、FedProx等联邦学习算法涉及的模型架构
├── scripts        # 启动脚本和实验运行命令
│   ├── run_federated.sh  # 示例脚本,执行联邦学习任务
│   └── ...
├── utils          # 工具函数集合,支持数据预处理、日志记录等功能
├── README.md      # 项目说明文档
├── requirements.txt  # 必要的Python依赖列表
└── ...            # 其他辅助文件和文档
  • configs:存放所有实验配置,细分到算法、数据集和一般性设置,便于定制化实验。
  • datasets:包含了处理各种数据集的代码,以适应不同的数据分布情况。
  • models:实现了联邦学习中使用的神经网络模型。
  • scripts:提供了启动实验的脚本,简化了实验的启动流程。
  • utils:提供了一系列工具函数,对项目运行至关重要,如数据处理和日志管理。

2. 项目启动文件介绍

主要启动文件: scripts/run_federated.sh

  • 用途: 此脚本是执行联邦学习实验的主要入口点。它通常接受一些参数,比如选择的联邦学习算法、数据集、运行模式等,并根据配置文件中的设定来启动相应的联邦学习过程。
  • 如何使用:
    # 假设你想运行一个基于FedAvg算法的实验
    ./run_federated.sh --algorithm FedAvg --dataset MNIST
    

确保查看脚本内的注释,以了解可选参数和默认设置。

3. 项目的配置文件介绍

配置文件位于 configs/ 子目录下。

  • algorithm配置:定义了联邦学习算法的具体参数,例如同步与异步模式、客户端参与率等。
  • data配置:指定数据集细节,如数据切分方法、非IID程度(如标签分布、特征分布或量级偏斜)。
  • general配置:涵盖全局设置,包括运行环境的通用参数,如日志级别、训练轮次等。

示例配置文件结构

  • algorithm目录下,每种算法有一个或多个.yaml文件,例如fedavg.yaml
  • 数据集配置类似,会详细描述数据集的预处理方式和非IID条件。
  • 在使用前,应根据实际需求调整这些配置文件,以符合特定的实验要求。

通过以上介绍,您可以快速入门NIID-Bench,进行联邦学习的相关实验和研究。记得仔细阅读每个配置文件的说明,以充分利用此框架的灵活性。

NIID-BenchFederated Learning on Non-IID Data Silos: An Experimental Study (ICDE 2022)项目地址:https://gitcode.com/gh_mirrors/ni/NIID-Bench

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓丹游Kingsley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值