NIID-Bench 使用指南
本指南旨在帮助开发者和研究人员快速了解并使用 NIID-Bench,一个用于联邦学习在非独立同分布(Non-Independent and Identically Distributed,NIID)数据上的实验研究平台。通过本指南,您将熟悉项目的基本结构、关键启动文件以及配置选项。
1. 目录结构及介绍
项目根目录结构大致如下:
NIID-Bench/
│
├── configs # 配置文件夹,包含不同实验设置的配置文件
│ ├── algorithm # 联邦学习算法相关的配置
│ ├── data # 数据集配置
│ └── general # 通用配置项
├── datasets # 数据处理逻辑或脚本,用于加载和处理不同的数据集
├── models # 不同的模型实现,包括FedAvg、FedProx等联邦学习算法涉及的模型架构
├── scripts # 启动脚本和实验运行命令
│ ├── run_federated.sh # 示例脚本,执行联邦学习任务
│ └── ...
├── utils # 工具函数集合,支持数据预处理、日志记录等功能
├── README.md # 项目说明文档
├── requirements.txt # 必要的Python依赖列表
└── ... # 其他辅助文件和文档
- configs:存放所有实验配置,细分到算法、数据集和一般性设置,便于定制化实验。
- datasets:包含了处理各种数据集的代码,以适应不同的数据分布情况。
- models:实现了联邦学习中使用的神经网络模型。
- scripts:提供了启动实验的脚本,简化了实验的启动流程。
- utils:提供了一系列工具函数,对项目运行至关重要,如数据处理和日志管理。
2. 项目启动文件介绍
主要启动文件: scripts/run_federated.sh
- 用途: 此脚本是执行联邦学习实验的主要入口点。它通常接受一些参数,比如选择的联邦学习算法、数据集、运行模式等,并根据配置文件中的设定来启动相应的联邦学习过程。
- 如何使用:
# 假设你想运行一个基于FedAvg算法的实验 ./run_federated.sh --algorithm FedAvg --dataset MNIST
确保查看脚本内的注释,以了解可选参数和默认设置。
3. 项目的配置文件介绍
配置文件位于 configs/
子目录下。
- algorithm配置:定义了联邦学习算法的具体参数,例如同步与异步模式、客户端参与率等。
- data配置:指定数据集细节,如数据切分方法、非IID程度(如标签分布、特征分布或量级偏斜)。
- general配置:涵盖全局设置,包括运行环境的通用参数,如日志级别、训练轮次等。
示例配置文件结构:
- 在
algorithm
目录下,每种算法有一个或多个.yaml
文件,例如fedavg.yaml
。 - 数据集配置类似,会详细描述数据集的预处理方式和非IID条件。
- 在使用前,应根据实际需求调整这些配置文件,以符合特定的实验要求。
通过以上介绍,您可以快速入门NIID-Bench,进行联邦学习的相关实验和研究。记得仔细阅读每个配置文件的说明,以充分利用此框架的灵活性。