Vit-RGTS 项目教程
1. 项目的目录结构及介绍
Vit-RGTS/
├── .gitignore
├── LICENSE
├── README.md
├── agorabanner.png
├── example.py
├── pyproject.toml
├── requirements.txt
├── train.py
└── vit_rgts/
├── __init__.py
├── main.py
└── ...
- .gitignore: 用于指定Git版本控制系统忽略的文件和目录。
- LICENSE: 项目的许可证文件,本项目使用MIT许可证。
- README.md: 项目说明文档,包含项目的基本信息和使用指南。
- agorabanner.png: 项目相关的图片文件。
- example.py: 示例代码文件,展示如何使用Vit-RGTS。
- pyproject.toml: 项目配置文件,定义项目构建工具和依赖。
- requirements.txt: 项目依赖文件,列出项目运行所需的Python包。
- train.py: 训练脚本文件,用于训练模型。
- vit_rgts/: 项目核心代码目录,包含项目的各个模块。
- init.py: 初始化文件,使目录成为一个Python包。
- main.py: 主模块文件,包含项目的主要功能实现。
2. 项目的启动文件介绍
项目的启动文件是 train.py
,该文件用于训练Vit-RGTS模型。以下是 train.py
的基本结构和功能介绍:
import torch
from vit_rgts.main import VitRGTS
# 初始化模型
v = VitRGTS(
image_size=256,
patch_size=32,
num_classes=1000,
dim=1024,
depth=6,
heads=16,
mlp_dim=2048,
dropout=0.1,
emb_dropout=0.1
)
# 加载数据
img = torch.randn(1, 3, 256, 256)
# 模型预测
preds = v(img)
print(preds)
- 导入模块: 导入必要的Python模块和Vit-RGTS包。
- 初始化模型: 创建Vit-RGTS模型的实例,并设置模型参数。
- 加载数据: 生成随机数据用于模型训练。
- 模型预测: 使用模型进行预测并输出结果。
3. 项目的配置文件介绍
项目的配置文件是 pyproject.toml
,该文件定义了项目的构建工具和依赖。以下是 pyproject.toml
的基本内容:
[build-system]
requires = ["setuptools", "wheel"]
[project]
name = "vit-rgts"
version = "0.0.2"
description = "Vision Transformers Need Registers"
authors = [
{ name="Kye Gomez" }
]
license = { file="LICENSE" }
requires-python = ">=3.6, <4.0"
dependencies = [
"torch",
"numpy"
]
- build-system: 定义项目构建系统所需的工具。
- project: 定义项目的基本信息,包括名称、版本、描述、作者、许可证和Python版本要求。
- dependencies: 列出项目运行所需的依赖包。
通过以上内容,您可以了解Vit-RGTS项目的目录结构、启动文件和配置文件的基本信息,并根据这些信息进行项目的安装和使用。