Stable diffusion 本地部署加载模型报 openai/clip-vit-large-patch14 错误的解决方法

1. 报错描述

本地部署好 Stable diffusion 以后,点击加载模型时报 openai/clip-vit-large-patch14 错误,具体报错信息如下:

raise EnvironmentError(

OSError: Can't load tokenizer for 'openai/clip-vit-large-patch14'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure 'openai/clip-vit-large-patch14' is the correct path to a directory containing all relevant files for a CLIPTokenizer tokenizer. Failed to create model quickly; will retry using slow method.

loading stable diffusion model: OSError

2. 报错原因

连不上huggingface,无法下载模型。

3. 解决方法

1)手动下载 clip-vit-large-patch14 相关文件,可以去官网下载。

2)在本地磁盘中创建 openai 目录;

3)将下载的文件解压缩放入 openai 目录中;

4)打开本地安装目录中的 tokenization_utils_base.py 文件,文件路径为:\stable-diffusion-webui\venv\Lib\site-packages\transformers 

5)在文件中搜索 pretrained_model_name_or_path =,修改等号后面的路径为第 3 步中 clip-vit-large-patch14 的路径。例如:

6)打开 \stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\encoders 路径下的 modules.py 文件,修改路径,具体如下(有两处):

第 1 处:

第 2 处:

7. 重启 SD ,重启后再次加载模型,已经可以加载出来了:

#Stable diffusion

### 解决方案概述 当遇到 `openai/clip-vit-large-patch14` 加载失败的问题时,通常是因为缺少必要的预训练权重文件或依赖项配置不正确。以下是针对该问题的具体解决方案[^2]。 #### 方法一:手动下载并缓存模型文件 如果自动加载器无法获取到所需的模型资源,则可以选择手动下载这些资源,并将其放置于本地缓存目录下: 1. 访问 Hugging Face 官方页面上的 [CLIP ViT-Large-Patch14](https://huggingface.co/openai/clip-vit-large-patch14/tree/main),找到对应的 PyTorch 权重文件和其他必要组件; 2. 下载所有必需的 `.bin`, `.json` 文件以及任何其他相关联的数据集描述符; 3. 将上述文件复制至 Python 环境中的 transformers 库默认使用的缓存路径内,默认情况下位于用户主目录下的 `.cache/huggingface/transformers/models--openai--clip-vit-large-patch14/snapshots/<commit_id>/` 中; 通过这种方式绕过了网络请求过程中的潜在障碍,从而提高了成功加载的可能性。 ```bash mkdir -p ~/.cache/huggingface/transformers/models--openai--clip-vit-large-patch14/snapshots/ cd ~/.cache/huggingface/transformers/models--openai--clip-vit-large-patch14/snapshots/ wget https://cdn.huggingface.co/openai/clip-vit-large-patch14/pytorch_model.bin ``` #### 方法二:更新环境变量设置 另一种可能的原因在于某些特定版本之间的兼容性差异所引起的冲突。此时可以通过调整环境变量来尝试解决问题: - 设置 `TRANSFORMERS_OFFLINE=1` 可以强制使用离线模式,在这种状态下只会查找已经存在于本地磁盘上的模型实例而不试图连接互联网; - 或者指定确切的目标提交哈希值作为参数传递给 Tokenizer 和 Model 的初始化函数调用,以此确保获得完全匹配的一致副本。 ```python import os os.environ["TRANSFORMERS_OFFLINE"] = "1" from transformers import CLIPProcessor, CLIPTokenizer, CLIPModel processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14", revision="main") model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14", revision="main") tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", revision="main") ``` 以上两种方式均有助于克服因网络状况不佳或其他因素造成的加载难题。对于大多数情况而言,采用其中任意一种策略都应能有效缓解乃至彻底消除此类异常现象的发生概率。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值