PandasSchema 使用教程

PandasSchema 使用教程

PandasSchemaA validation library for Pandas data frames using user-friendly schemas项目地址:https://gitcode.com/gh_mirrors/pa/PandasSchema

项目介绍

PandasSchema 是一个用于验证表格数据的模块,支持 CSV 和 TSV 文件。它利用强大的数据分析工具 Pandas 来快速高效地进行数据验证。PandasSchema 提供了一个用户友好的架构,使得数据验证变得简单直观。

项目快速启动

安装

首先,使用 pip 安装 PandasSchema:

pip install pandas_schema

基本使用

以下是一个简单的示例,展示如何使用 PandasSchema 验证 CSV 数据:

import pandas as pd
from pandas_schema import Schema, Column
from pandas_schema.validation import InListValidation, RangeValidation, CustomValidation

# 定义数据和验证规则
data = pd.DataFrame({
    'Given Name': ['Gerald', 'Yuuwa', 'Edyta'],
    'Family Name': ['Hampton', 'Miyake', 'Majewska'],
    'Age': [82, 27, 50],
    'Sex': ['Male', 'Male', 'Female'],
    'Customer ID': ['2582GABK', '7951WVLW', '7758NSID']
})

schema = Schema([
    Column('Given Name', [CustomValidation(lambda x: x.isalpha(), '包含非字母字符')]),
    Column('Family Name', [CustomValidation(lambda x: x.isalpha(), '包含非字母字符')]),
    Column('Age', [RangeValidation(0, 120)]),
    Column('Sex', [InListValidation(['Male', 'Female'])]),
    Column('Customer ID', [CustomValidation(lambda x: len(x) == 8, '长度不正确')])
])

# 验证数据
errors = schema.validate(data)
for error in errors:
    print(error)

应用案例和最佳实践

案例1:客户信息验证

假设你有一个包含客户信息的 CSV 文件,你需要确保所有字段都符合特定规则。使用 PandasSchema 可以轻松实现这一点:

schema = Schema([
    Column('Given Name', [CustomValidation(lambda x: x.isalpha(), '包含非字母字符')]),
    Column('Family Name', [CustomValidation(lambda x: x.isalpha(), '包含非字母字符')]),
    Column('Age', [RangeValidation(0, 120)]),
    Column('Sex', [InListValidation(['Male', 'Female'])]),
    Column('Customer ID', [CustomValidation(lambda x: len(x) == 8, '长度不正确')])
])

data = pd.read_csv('customer_info.csv')
errors = schema.validate(data)
for error in errors:
    print(error)

最佳实践

  1. 自定义验证器:根据业务需求编写自定义验证器,确保数据符合特定规则。
  2. 错误处理:在验证过程中捕获并处理错误,确保程序的健壮性。
  3. 批量验证:对于大型数据集,分批进行验证以提高效率。

典型生态项目

PandasSchema 可以与其他数据处理和分析工具结合使用,例如:

  1. Pandas:用于数据处理和分析。
  2. NumPy:用于数值计算。
  3. Matplotlib:用于数据可视化。
  4. Scikit-learn:用于机器学习。

通过这些工具的结合,可以构建一个完整的数据处理和分析流程,从数据验证到模型训练,再到结果展示。

PandasSchemaA validation library for Pandas data frames using user-friendly schemas项目地址:https://gitcode.com/gh_mirrors/pa/PandasSchema

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

翟舟琴Jacob

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值