APE 项目安装与使用教程
APE 项目地址: https://gitcode.com/gh_mirrors/ape2/APE
1. 项目目录结构及介绍
APE 项目的目录结构如下:
APE/
├── asset/
├── configs/
├── datasets/
├── demo/
├── scripts/
├── tools/
├── .gitignore
├── LICENSE
├── README.md
├── requirements.txt
└── setup.py
目录结构介绍
- asset/: 存放项目相关的资源文件。
- configs/: 存放项目的配置文件。
- datasets/: 存放项目使用的数据集。
- demo/: 存放项目的演示代码。
- scripts/: 存放项目的脚本文件,用于执行各种任务。
- tools/: 存放项目使用的工具代码。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍文档。
- requirements.txt: 项目的依赖库文件。
- setup.py: 项目的安装脚本。
2. 项目的启动文件介绍
APE 项目的启动文件主要位于 demo/
目录下。以下是主要的启动文件介绍:
demo/app.py
这是 APE 项目的 Web UI 演示启动文件。通过运行该文件,可以在本地启动一个 Web 界面,用于演示 APE 的功能。
启动命令:
pip3 install gradio
cd APE/demo
python3 app.py
demo/demo_lazy.py
这是 APE 项目的图像或视频推理启动文件。通过运行该文件,可以对图像或视频进行推理,并输出结果。
启动命令:
python3 demo/demo_lazy.py \
--config-file configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO_GQA_PhraseCut_Flickr30k/ape_deta/ape_deta_vitl_eva02_clip_vlf_lsj1024_cp_16x4_1080k.py \
--input image1.jpg image2.jpg image3.jpg \
--output /path/to/output/dir \
--confidence-threshold 0.1 \
--text-prompt 'person, car, chess piece of horse head' \
--with-box \
--with-mask \
--with-sseg \
--opts \
train.init_checkpoint=/path/to/APE-D/checkpoint \
model.model_language.cache_dir="" \
model.model_vision.select_box_nums_for_evaluation=500 \
model.model_vision.text_feature_bank_reset=True
3. 项目的配置文件介绍
APE 项目的配置文件主要位于 configs/
目录下。以下是主要的配置文件介绍:
configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO_GQA_PhraseCut_Flickr30k/ape_deta/ape_deta_vitl_eva02_clip_vlf_lsj1024_cp_16x4_1080k.py
这是 APE 项目的主要配置文件,包含了模型训练和推理的各项参数配置。
配置文件内容示例
# 模型配置
model:
model_language:
cache_dir: ""
model_vision:
select_box_nums_for_evaluation: 500
text_feature_bank_reset: True
# 训练配置
train:
init_checkpoint: /path/to/APE-D/checkpoint
# 其他配置
...
通过修改这些配置文件,可以调整模型的行为和训练参数。
以上是 APE 项目的安装与使用教程,希望对你有所帮助!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考