Lama Cleaner 安装与配置指南
1. 项目基础介绍
Lama Cleaner 是一个开源的图片修复工具,基于最先进的 AI 模型。它可以去除图片中的不需要的元素,支持多种先进的人工智能模型,如 LaMa、LDM、ZITS 等。此项目完全免费且开源,可以自托管,支持 CPU、GPU 以及 M1/M2 芯片。它的主要编程语言是 Python,同时也使用了 TypeScript、JavaScript、SCSS 等技术。
2. 关键技术和框架
- Python:项目的主要编程语言,用于后端逻辑处理。
- TypeScript/JavaScript:用于前端界面开发。
- SCSS:一种 CSS 预处理器,用于扩展 CSS 的功能。
- PyTorch:一个开源的机器学习库,用于深度学习模型的开发。
- 多种 AI 模型:如 LaMa、LDM、ZITS 等,用于图片修复的核心算法。
3. 安装和配置准备工作
在开始安装前,请确保您的系统中已经安装了以下依赖:
- Python 3.8 或更高版本
- Node.js 和 npm(用于前端构建)
- Git(用于克隆项目)
同时,根据您的需要选择安装 GPU 版本的 PyTorch 以加速处理速度。
安装步骤
步骤 1:克隆项目
打开终端(或命令提示符),执行以下命令克隆项目:
git clone https://github.com/playgroundai/lama-cleaner.git
cd lama-cleaner
步骤 2:安装后端依赖
安装 Python 依赖,确保使用虚拟环境以避免污染全局环境:
pip install virtualenv
python -m venv venv
source venv/bin/activate # 在 Windows 下使用 `venv\Scripts\activate`
pip install -r requirements.txt
步骤 3:安装前端依赖
切换到前端目录并安装依赖:
cd app/
pnpm install
步骤 4:启动开发服务器
在完成前端依赖安装后,您可以启动开发服务器来查看界面:
pnpm start
步骤 5:构建项目
当您准备将项目部署到生产环境时,执行构建命令:
pnpm build
步骤 6:运行后端服务
在另一个终端中,启动后端服务:
python main.py
此时,Lama Cleaner 应该已经在 http://localhost:8080
上运行。
确保遵循上述步骤,您应该能够顺利地安装并运行 Lama Cleaner。如果在安装过程中遇到任何问题,请检查项目文档或打开终端中的错误输出以获取更多信息。