optillm 使用教程

optillm 使用教程

optillm Optimizing inference proxy for LLMs optillm 项目地址: https://gitcode.com/gh_mirrors/op/optillm

1. 项目介绍

optillm 是一个开源的、兼容 OpenAI API 的优化推理代理,它实现了多种最先进的技术,可以提升大型语言模型(LLMs)的准确性和性能。该项目当前专注于实现那些在推理过程中通过额外计算来提高编码、逻辑和数学查询能力的技术。

2. 项目快速启动

安装

使用 pip
pip install optillm
使用 Docker
docker pull ghcr.io/codelion/optillm:latest
docker run -p 8000:8000 ghcr.io/codelion/optillm:latest
从源代码安装
git clone https://github.com/codelion/optillm.git
cd optillm
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

运行代理

python optillm.py

代理将启动并监听 8000 端口。

使用代理

一旦代理运行,您可以通过设置 base_urlhttp://localhost:8000/v1 来将其用作 OpenAI 客户端的替代。

import os
from openai import OpenAI

OPENAI_KEY = os.environ.get("OPENAI_API_KEY")
OPENAI_BASE_URL = "http://localhost:8000/v1"
client = OpenAI(api_key=OPENAI_KEY, base_url=OPENAI_BASE_URL)

response = client.chat.completions.create(
    model="moa-gpt-4o",
    messages=[
        {
            "role": "user",
            "content": "Write a Python program to build an RL model to recite text from any position that the user provides, using only numpy."
        }
    ],
    temperature=0.2
)
print(response)

3. 应用案例和最佳实践

optillm 可以通过在模型名称前添加技术标签来控制优化技术。例如,使用 moa 作为优化方法:

response = client.chat.completions.create(
    model="moa-gpt-4o",
    messages=[
        {
            "role": "user",
            "content": "How many r's are there in strawberry?"
        }
    ],
    temperature=0.2
)

您还可以在请求体中通过 optillm_approach 字段来指定技术:

response = client.chat.completions.create(
    model="gpt-4o-mini",
    messages=[
        {
            "role": "user",
            "content": ""
        }
    ],
    temperature=0.2,
    extra_body={
        "optillm_approach": "bon|moa|mcts"
    }
)

或者在提示中使用特定的标签来提及方法:

response = client.chat.completions.create(
    model="gpt-4o-mini",
    messages=[
        {
            "role": "user",
            "content": "<optillm_approach>re2</optillm_approach> How many r's are there in strawberry?"
        }
    ],
    temperature=0.2
)

4. 典型生态项目

optillm 支持所有主流的 LLM 提供商和模型进行推理。您需要设置正确的环境变量,代理将选择相应的客户端。例如,使用 optillm 与 Gemini Flash 模型:

os.environ['GEMINI_API_KEY'] = 'your_api_key'

然后在请求中使用模型:

response = client.chat.completions.create(
    model="moa-gemini/gemini-1.5-flash-002",
    messages=[
        {
            "role": "user",
            "content": "Your query here"
        }
    ],
    temperature=0.2
)

optillm Optimizing inference proxy for LLMs optillm 项目地址: https://gitcode.com/gh_mirrors/op/optillm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凌桃莺Talia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值