miceforest 项目教程

miceforest 项目教程

miceforest miceforest 项目地址: https://gitcode.com/gh_mirrors/mi/miceforest

1. 项目介绍

miceforest 是一个基于 LightGBM 的 Python 库,用于执行快速、内存高效的多重插补(Multiple Imputation by Chained Equations, MICE)。该库旨在提供一种灵活且易于使用的方式来处理缺失数据,特别适用于需要高效处理大规模数据集的场景。miceforest 支持多种数据类型,包括分类数据,并且可以与 sklearn 管道无缝集成。

2. 项目快速启动

安装

你可以通过 pipconda 安装 miceforest

# 使用 pip 安装
pip install miceforest --no-cache-dir

# 使用 conda 安装
conda install -c conda-forge miceforest

基本使用

以下是一个简单的示例,展示如何使用 miceforest 进行数据插补:

import miceforest as mf
from sklearn.datasets import load_iris
import pandas as pd

# 加载数据并引入缺失值
iris = pd.concat(load_iris(as_frame=True, return_X_y=True), axis=1)
iris.rename(columns={"target": "species"}, inplace=True)
iris['species'] = iris['species'].astype('category')
iris_amp = mf.ampute_data(iris, perc=0.25, random_state=1991)

# 创建 ImputationKernel 对象
kds = mf.ImputationKernel(iris_amp, random_state=1991)

# 运行 MICE 算法 2 次迭代
kds.mice(2)

# 返回完成的数据集
iris_complete = kds.complete_data()

print(iris_complete.isnull().sum(0))

3. 应用案例和最佳实践

应用案例

miceforest 在处理缺失数据时表现出色,特别适用于以下场景:

  • 医疗数据分析:在医疗数据中,缺失值是常见问题。miceforest 可以帮助研究人员快速填补这些缺失值,以便进行更准确的分析。
  • 金融数据处理:金融数据通常包含大量缺失值,miceforest 可以高效地处理这些数据,确保分析的准确性。

最佳实践

  • 调整 LightGBM 参数:根据数据的特点,调整 LightGBM 的参数可以提高插补的准确性。例如,对于分类变量,可以调整 n_estimators 参数。
  • 多重插补:使用 ImputationKernel 进行多重插补,可以更好地评估缺失值对结果的影响。

4. 典型生态项目

miceforest 可以与其他数据处理和机器学习库无缝集成,例如:

  • Pandas:用于数据加载和预处理。
  • Scikit-learn:用于构建机器学习模型。
  • LightGBM:作为插补算法的核心引擎。

通过这些生态项目的结合,miceforest 可以构建一个完整的数据处理和分析流程,适用于各种复杂的数据分析任务。

miceforest miceforest 项目地址: https://gitcode.com/gh_mirrors/mi/miceforest

最近一直在学coursera上面web intelligence and big data这门课,上周五印度老师布置了一个家庭作业,要求写一个mapreduce程序,用python来实现。 具体描述如下: Programming Assignment for HW3 Homework 3 (Programming Assignment A) Download data files bundled as a .zip file from hw3data.zip Each file in this archive contains entries that look like: journals/cl/SantoNR90:::Michele Di Santo::Libero Nigro::Wilma Russo:::Programmer-Defined Control Abstractions in Modula-2. that represent bibliographic information about publications, formatted as follows: paper-id:::author1::author2::…. ::authorN:::title Your task is to compute how many times every term occurs across titles, for each author. For example, the author Alberto Pettorossi the following terms occur in titles with the indicated cumulative frequencies (across all his papers): program:3, transformation:2, transforming:2, using:2, programs:2, and logic:2. Remember that an author might have written multiple papers, which might be listed in multiple files. Further notice that ‘terms’ must exclude common stop-words, such as prepositions etc. For the purpose of this assignment, the stop-words that need to be omitted are listed in the script stopwords.py. In addition, single letter words, such as "a" can be ignored; also hyphens can be ignored (i.e. deleted). Lastly, periods, commas, etc. need to be ignored; in other words, only alphabets and numbers can be part of a title term: Thus, “program” and “program.” should both be counted as the term ‘program’, and "map-reduce" should be taken as 'map reduce'. Note: You do not need to do stemming, i.e. "algorithm" and "algorithms" can be treated as separate terms. The assignment is to write a parallel map-reduce program for the above task using either octo.py, or mincemeat.py, each of which is a lightweight map-reduce implementation written in Python. These are available from http://code.google.com/p/octopy/ and mincemeat.py-zipfile respectively. I strongly recommend mincemeat.py which is much faster than Octo,py even though the latter was covered first in the lecture video as an example. Both are very similar. Once you have computed the output, i.e. the terms-frequencies per author, go attempt Homework 3 where you will be asked questions that can be simply answered using your computed output, such as the top terms that occur for some particular author. Note: There is no need to submit the code; I assume you will experiment using octo.py to learn how to program using map-reduce. Of course, you can always write a serial program for the task at hand, but then you won’t learn anything about map-reduce. Lastly, please note that octo.py is a rather inefficient implementation of map-reduce. Some of you might want to delve into the code to figure out exactly why. At the same time, this inefficiency is likely to amplify any errors you make in formulating the map and reduce functions for the task at hand. So if your code starts taking too long, say more than an hour to run, there is probably something wrong.
基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

成冠冠Quinby

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值