scispacy 项目使用教程

scispacy 项目使用教程

scispacyallenai/scispacy: Scispacy 是一个用于自然语言处理的 Python 库,提供了针对科学领域文本的文本处理和分析功能,可以用于文本挖掘,信息提取和知识图谱构建等任务。项目地址:https://gitcode.com/gh_mirrors/sc/scispacy

1. 项目的目录结构及介绍

scispacy 项目的目录结构如下:

scispacy/
├── scispacy/
│   ├── __init__.py
│   ├── custom_tokenizer.py
│   ├── linker.py
│   ├── models.py
│   ├── pipeline.py
│   ├── util.py
│   └── ...
├── tests/
│   ├── __init__.py
│   ├── test_custom_tokenizer.py
│   ├── test_linker.py
│   ├── test_models.py
│   ├── test_pipeline.py
│   └── ...
├── setup.py
├── README.md
├── requirements.txt
└── ...

目录结构介绍

  • scispacy/: 包含项目的主要代码文件。
    • __init__.py: 初始化文件。
    • custom_tokenizer.py: 自定义分词器。
    • linker.py: 实体链接模块。
    • models.py: 模型定义。
    • pipeline.py: 处理管道。
    • util.py: 工具函数。
  • tests/: 包含项目的测试代码。
    • __init__.py: 初始化文件。
    • test_custom_tokenizer.py: 测试自定义分词器。
    • test_linker.py: 测试实体链接模块。
    • test_models.py: 测试模型定义。
    • test_pipeline.py: 测试处理管道。
  • setup.py: 安装脚本。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖文件。

2. 项目的启动文件介绍

项目的启动文件主要是 scispacy/__init__.py,该文件负责初始化项目并加载必要的模块和配置。

启动文件内容

from .pipeline import SciSpacyPipeline
from .models import load_model

__all__ = ["SciSpacyPipeline", "load_model"]

启动文件介绍

  • SciSpacyPipeline: 处理管道类,负责处理输入文本。
  • load_model: 加载模型的函数。

3. 项目的配置文件介绍

项目的配置文件主要是 setup.pyrequirements.txt

setup.py

setup.py 文件负责项目的安装和打包。

from setuptools import setup, find_packages

setup(
    name="scispacy",
    version="0.5.4",
    packages=find_packages(),
    install_requires=[
        "spacy>=3.0.0",
        "numpy",
        "scipy",
        "scikit-learn",
    ],
    author="Allen Institute for Artificial Intelligence",
    author_email="contact@allenai.org",
    description="A full spaCy pipeline and models for scientific/biomedical documents",
    long_description=open("README.md").read(),
    long_description_content_type="text/markdown",
    url="https://github.com/allenai/scispacy",
    classifiers=[
        "Programming Language :: Python :: 3",
        "License :: OSI Approved :: MIT License",
        "Operating System :: OS Independent",
    ],
    python_requires='>=3.6',
)

requirements.txt

requirements.txt 文件列出了项目依赖的库。

spacy>=3.0.0
numpy
scipy
scikit-learn

配置文件介绍

  • setup.py: 包含项目的名称、版本、依赖、作者等信息。
  • requirements.txt: 列出了项目运行所需的依赖库。

以上是 scispacy 项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。

scispacyallenai/scispacy: Scispacy 是一个用于自然语言处理的 Python 库,提供了针对科学领域文本的文本处理和分析功能,可以用于文本挖掘,信息提取和知识图谱构建等任务。项目地址:https://gitcode.com/gh_mirrors/sc/scispacy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瞿千斯Freda

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值