scispacy 项目使用教程
1. 项目的目录结构及介绍
scispacy 项目的目录结构如下:
scispacy/
├── scispacy/
│ ├── __init__.py
│ ├── custom_tokenizer.py
│ ├── linker.py
│ ├── models.py
│ ├── pipeline.py
│ ├── util.py
│ └── ...
├── tests/
│ ├── __init__.py
│ ├── test_custom_tokenizer.py
│ ├── test_linker.py
│ ├── test_models.py
│ ├── test_pipeline.py
│ └── ...
├── setup.py
├── README.md
├── requirements.txt
└── ...
目录结构介绍
scispacy/
: 包含项目的主要代码文件。__init__.py
: 初始化文件。custom_tokenizer.py
: 自定义分词器。linker.py
: 实体链接模块。models.py
: 模型定义。pipeline.py
: 处理管道。util.py
: 工具函数。
tests/
: 包含项目的测试代码。__init__.py
: 初始化文件。test_custom_tokenizer.py
: 测试自定义分词器。test_linker.py
: 测试实体链接模块。test_models.py
: 测试模型定义。test_pipeline.py
: 测试处理管道。
setup.py
: 安装脚本。README.md
: 项目说明文档。requirements.txt
: 项目依赖文件。
2. 项目的启动文件介绍
项目的启动文件主要是 scispacy/__init__.py
,该文件负责初始化项目并加载必要的模块和配置。
启动文件内容
from .pipeline import SciSpacyPipeline
from .models import load_model
__all__ = ["SciSpacyPipeline", "load_model"]
启动文件介绍
SciSpacyPipeline
: 处理管道类,负责处理输入文本。load_model
: 加载模型的函数。
3. 项目的配置文件介绍
项目的配置文件主要是 setup.py
和 requirements.txt
。
setup.py
setup.py
文件负责项目的安装和打包。
from setuptools import setup, find_packages
setup(
name="scispacy",
version="0.5.4",
packages=find_packages(),
install_requires=[
"spacy>=3.0.0",
"numpy",
"scipy",
"scikit-learn",
],
author="Allen Institute for Artificial Intelligence",
author_email="contact@allenai.org",
description="A full spaCy pipeline and models for scientific/biomedical documents",
long_description=open("README.md").read(),
long_description_content_type="text/markdown",
url="https://github.com/allenai/scispacy",
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires='>=3.6',
)
requirements.txt
requirements.txt
文件列出了项目依赖的库。
spacy>=3.0.0
numpy
scipy
scikit-learn
配置文件介绍
setup.py
: 包含项目的名称、版本、依赖、作者等信息。requirements.txt
: 列出了项目运行所需的依赖库。
以上是 scispacy 项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。