edx-dl 项目教程

edx-dl 项目教程

edx-dlA simple tool to download video lectures from edx.org (and other openedx sites)项目地址:https://gitcode.com/gh_mirrors/ed/edx-dl

1. 项目的目录结构及介绍

edx-dl/
├── AUTHORS.md
├── CONTRIBUTING.md
├── Dockerfile
├── LICENSE
├── MANIFEST.in
├── README.md
├── edx-dl.py
├── requirements-dev.txt
├── requirements.txt
├── setup.py
├── test_edx_dl.py
├── test_parsing.py
└── test_utils.py
  • AUTHORS.md: 项目贡献者列表。
  • CONTRIBUTING.md: 贡献指南。
  • Dockerfile: 用于构建 Docker 容器的文件。
  • LICENSE: 项目许可证(GPL-3.0)。
  • MANIFEST.in: 用于指定打包时的文件。
  • README.md: 项目说明文档。
  • edx-dl.py: 项目的主启动文件。
  • requirements-dev.txt: 开发依赖文件。
  • requirements.txt: 运行依赖文件。
  • setup.py: 项目安装脚本。
  • test_edx_dl.py: 项目测试文件。
  • test_parsing.py: 解析相关测试文件。
  • test_utils.py: 工具类测试文件。

2. 项目的启动文件介绍

edx-dl.py 是项目的启动文件,负责下载视频和课程材料。可以通过以下命令运行:

python edx-dl.py

3. 项目的配置文件介绍

项目没有明确的配置文件,但可以通过命令行参数进行配置。例如:

python edx-dl.py --help

可以查看所有可用的选项和简要描述。

例如,要指定除 edX 之外的站点,可以使用 -x 选项:

python edx-dl.py -x stanford

如果需要使用 Docker 运行,可以参考 Dockerfile 中的配置:

docker run --rm -it \
  -v "$(pwd)/edx/:/Downloaded" \
  strm/edx-dl -u <USER> -p <PASSWORD>

以上是 edx-dl 项目的基本教程,涵盖了目录结构、启动文件和配置方法。

edx-dlA simple tool to download video lectures from edx.org (and other openedx sites)项目地址:https://gitcode.com/gh_mirrors/ed/edx-dl

数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:11,787张图片 - 验证集:643张图片 - 测试集:431张图片 总计:12,861张真实场景图片 分类类别: - Elephant(象):陆生大型哺乳动物,包含多种自然环境中的活动姿态。 - Bear(熊):涵盖不同种类的熊科动物,包括静态及运动状态。 - Cheetah(猎豹):强调高速运动状态下的动态捕捉样本。 - Deer(鹿):包含林地和草原环境中的鹿群及个体样本。 - Fox(狐):涵盖多种狐狸品种的多样化行为模式。 标注格式: YOLO格式,包含标准化的归一化坐标标注,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面视角等多角度拍摄的野生动物图像,包含昼夜不同光照条件下的样本。 二、适用场景 生态监测系统开发: 支持构建自然保护区智能监测系统,实时检测野生动物活动轨迹并统计种群分布。 自动驾驶环境感知: 用于训练车辆视觉系统识别道路周边野生动物的能力,提升行车安全系数。 野生动物研究分析: 提供动物行为学研究的结构化数据支撑,支持物种活动模式分析与栖息地研究。 安防监控系统升级: 适用于农场、林区等场景的智能安防系统开发,精准识别潜在动物威胁。 三、数据集优势 多物种覆盖: 包含5类高关注度野生动物,覆盖陆地生态系统的关键指示物种。 场景多样性: 数据采集涵盖丛林、草原、山地等多种自然生境,增强模型泛化能力。 标注专业性: 经动物学专家校验的精准边界框标注,确保目标定位与分类准确性。 任务适配性: 原生YOLO格式支持快速迁移至目标检测、行为分析、密度估计等衍生任务。 规模优势: 超万级标注样本量,有效支撑深度神经网络的特征学习需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吴发崧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值