HybridDepth 使用指南

HybridDepth 使用指南

HybridDepth Official implementation for HybridDepth Model (WACV 2025, ISMAR 2024) HybridDepth 项目地址: https://gitcode.com/gh_mirrors/hy/HybridDepth

1. 项目目录结构及介绍

HybridDepth 项目目录结构如下:

HybridDepth/
├── assets/                   # 存储资源文件
├── checkpoints/              # 存储预训练模型权重文件
├── configs/                  # 配置文件目录
├── dataloader/               # 数据加载模块
├── model/                    # 模型定义模块
├── notebooks/                # Jupyter 笔记本文件
├── results/                  # 存储实验结果
├── scripts/                  # 脚本文件目录
├── server/                   # 服务器相关代码
├── utils/                    # 工具模块
├── .gitignore                # Git 忽略文件
├── LICENSE                   # 开源协议文件
├── README.md                 # 项目说明文件
├── cli_run.py                # 命令行运行脚本
├── environment.yml           # Conda 环境配置文件
├── hubconf.py                # TorchHub 配置文件
├── loss.py                   # 损失函数定义文件
  • assets/: 存储项目所需的资源文件。
  • checkpoints/: 存储训练好的模型权重文件。
  • configs/: 存储项目配置文件,用于定义数据集路径、模型设置等。
  • dataloader/: 数据加载模块,用于处理输入数据。
  • model/: 模型定义模块,包含HybridDepth模型的实现代码。
  • notebooks/: Jupyter 笔记本文件,用于实验和数据分析。
  • results/: 存储实验结果,如深度图等。
  • scripts/: 脚本文件目录,包含训练、测试等脚本。
  • server/: 服务器相关代码。
  • utils/: 工具模块,包含项目所需的各种工具函数。
  • .gitignore: Git 忽略文件,指定不需要提交到版本库的文件和目录。
  • LICENSE: 开源协议文件,本项目采用GPL-3.0协议。
  • README.md: 项目说明文件,介绍项目的基本信息和使用方法。
  • cli_run.py: 命令行运行脚本,用于运行项目的主要功能。
  • environment.yml: Conda 环境配置文件,用于创建项目运行所需的Python环境。
  • hubconf.py: TorchHub 配置文件,用于定义如何在TorchHub上加载预训练模型。
  • loss.py: 损失函数定义文件,定义项目所需的损失函数。

2. 项目的启动文件介绍

项目的启动文件是 cli_run.py,它是一个命令行运行脚本,用于运行项目的主要功能。以下是该文件的主要功能:

  • 训练模型:通过指定 train 参数来启动模型训练过程。
  • 测试模型:通过指定 test 参数来测试模型性能。
  • 模型推理:通过指定 infer 参数来进行模型推理。

使用示例:

# 训练模型
python cli_run.py train --config configs/config_file_name.yaml

# 测试模型
python cli_run.py test --config configs/config_file_name.yaml

# 模型推理
python cli_run.py infer --config configs/config_file_name.yaml

3. 项目的配置文件介绍

项目的配置文件位于 configs/ 目录下,用于定义项目运行所需的参数,如数据集路径、模型设置等。配置文件采用YAML格式。

以下是一个配置文件的示例:

model:
  invert_depth: True
  learning_rate: 3e-4
  weight_decay: 0.001
data:
  class_path: dataloader.dataset.NYUDataModule
  init_args:
    nyuv2_data_root: "path/to/NYUv2"
    img_size: [480, 640]
    remove_white_border: True
    num_workers: 0
    use_labels: True
  batch_size: 24
ckpt_path: null

在这个配置文件中:

  • model: 定义模型参数,如是否反转深度值、学习率、权重衰减等。
  • data: 定义数据集参数,如数据集路径、图像大小、是否去除白边、工作线程数、是否使用标签等。
  • batch_size: 定义训练时的批量大小。
  • ckpt_path: 定义模型权重的保存路径,如果是训练则通常设置为 null

HybridDepth Official implementation for HybridDepth Model (WACV 2025, ISMAR 2024) HybridDepth 项目地址: https://gitcode.com/gh_mirrors/hy/HybridDepth

内容概要:本文档《gee scripts.txt》记录了利用Google Earth Engine(GEE)进行遥感影像处理与分类的脚本流程。首先,对指定区域内的Landsat 5卫星图像进行了数据筛选,排除云量超过7%的影像,并应用缩放因子调整光学波段和热波段的数值。接着,基于样本数据集训练随机森林分类器,用于区分植被、水体、建筑、土壤、拜耳作物、岩石和草地等地物类型。最后,将训练好的模型应用于处理后的Landsat 5影像,生成分类结果图层,并计算混淆矩阵以评估模型准确性,同时将分类结果导出至Google Drive。 适合人群:从事地理信息系统(GIS)、遥感科学或环境监测领域的研究人员和技术人员,特别是那些希望深入了解GEE平台及其在地物分类中的应用的人士。 使用场景及目标:①从Landsat卫星获取特定时间段内的高质量影像数据;②通过预处理步骤提高影像质量,确保后续分析的有效性;③构建并训练机器学习模型以实现地物自动分类;④评估分类模型性能,保证结果可靠性;⑤将最终成果高效存储于云端平台以便进一步研究或共享。 阅读建议:由于涉及较多专业术语和技术细节,在阅读时建议先熟悉GEE平台的基本操作以及相关遥感知识,重点关注数据处理流程和分类算法的选择依据。此外,对于代码部分,可以尝试在自己的GEE环境中运行,以便更好地理解每个步骤的具体作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谭沫彤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值