SubwAI 开源项目教程

SubwAI 开源项目教程

subwAIScripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification项目地址:https://gitcode.com/gh_mirrors/su/subwAI

项目介绍

SubwAI 是一个基于人工智能的子域名发现工具,旨在帮助安全研究人员和渗透测试人员自动化地发现目标域名的子域名。该项目利用多种开源情报(OSINT)技术和机器学习算法来提高子域名发现的效率和准确性。

项目快速启动

环境准备

在开始之前,请确保您的系统已安装以下依赖:

  • Python 3.6 或更高版本
  • Git

安装步骤

  1. 克隆项目仓库:

    git clone https://github.com/nikp06/subwAI.git
    
  2. 进入项目目录:

    cd subwAI
    
  3. 安装所需的 Python 包:

    pip install -r requirements.txt
    

使用示例

以下是一个简单的使用示例,展示如何使用 SubwAI 发现目标域名的子域名:

python subwAI.py -d example.com

应用案例和最佳实践

应用案例

SubwAI 在以下场景中特别有用:

  • 渗透测试:在渗透测试过程中,发现目标域名的所有子域名可以帮助测试人员更全面地评估目标的安全性。
  • 安全研究:安全研究人员可以使用 SubwAI 来发现潜在的安全漏洞和未公开的子域名。

最佳实践

  • 定期扫描:定期使用 SubwAI 扫描目标域名,以发现新的子域名和潜在的安全威胁。
  • 集成到工作流:将 SubwAI 集成到您的自动化工作流中,以提高效率。

典型生态项目

SubwAI 可以与其他开源安全工具和项目集成,以提供更全面的安全解决方案。以下是一些典型的生态项目:

  • Nmap:用于网络发现和安全审计。
  • Metasploit:用于渗透测试和漏洞利用。
  • OWASP ZAP:用于 web 应用程序的安全测试。

通过将 SubwAI 与其他工具集成,您可以构建一个强大的安全测试和研究环境。

subwAIScripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification项目地址:https://gitcode.com/gh_mirrors/su/subwAI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

余鹤赛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值