Tensorflow Android端开发之——模型节点信息查看

查看tensorflow 冻结的网络模型(pb格式的文件)节点时可用以下的代码实现; 拿ssd-mobilenet v1模型进行试验; 代码部分: import tensorflow as tf with tf.Session() as sess: with open('./ssd...

2018-11-27 14:22:51

阅读数:82

评论数:0

Tensorflow在手机端的部署——官网Android工程源码分析之TensorFlowYoloDetector.java (1)

文章分析下tensorflow提供的官方Android工程的源码分析,后续涉及更改代码,因此有必要对其做深入理解。 首先工程文件路径为:tensorflow-master\tensorflow\examples\android 由于这个android工程中实现了目标检测,风格迁移,语音,图像分...

2018-11-24 23:05:33

阅读数:73

评论数:6

AndroidStudio修改项目包名问题及解决(解决apk安装覆盖问题)

对于一个项目,想更改其中的一部分内容,然后再次安装到手机,我想保留更改前后的app都安装到手机。每次操作都会覆盖文件,提示需要先卸载先前的app; 本文为了解决如上问题,搜了些资料,针对自己的情况做成如下笔记;(本人安卓小白,文章仅仅做学习记录) step1: 拷贝一份project,将其重命...

2018-11-12 18:23:45

阅读数:159

评论数:0

Tensorflow在手机端的部署——Tensorflow-lite移动端测试分类模型性能(4)

参考博客:https://blog.csdn.net/u011092156/article/details/80639811 本文目的主要是想用tf-quantitify和tf-floate对移动端中的图像集的分类结果做测试,评估每个类别的精确度,召回率;从而看看模型量化成浮点型和整型的结果差异...

2018-11-03 01:41:18

阅读数:82

评论数:0

Tensorflow在手机端的部署——yolo模型转tensorflow模型(3)

如需转载请向本人确认~谢谢! 本系列文章中前几篇介绍了 tensorflow提供的android demo工程的结构;https://blog.csdn.net/c20081052/article/details/83145836 其目标检测的运行(工程默认的ssd-mobilenet v1...

2018-11-03 00:11:54

阅读数:231

评论数:0

Tensorflow官方android工程demo结构分析

本文参考: https://blog.csdn.net/u013510838/article/details/79827119 https://blog.csdn.net/xhbxhbsq/article/details/54615663 Tensorflow官方源码部分有这么个目录:ten...

2018-10-23 23:22:33

阅读数:82

评论数:0

Tensorflow 模型文件结构、模型中Tensor查看

转自:https://blog.csdn.net/dcrmg/article/details/79672874 参考:https://www.jb51.net/article/142183.htm tensorflow训练后保存的模型主要包含两部分,一是网络结构的定义(网络图),二是网络结构里...

2018-10-07 22:11:25

阅读数:303

评论数:0

AndroidStudio界面出现乱码解决方法

问题描述: 我是在安装Android Studio时候界面出现了乱码情况,当然在导入一个工程后,log以及工程中的内容都出现了乱码;主要问题是我的工程是全英文的,不存在网上说可能是中文字符乱码情况; 解决方法: 方法一: AS窗口中点击File->Settings-&...

2018-09-29 16:08:12

阅读数:87

评论数:0

FlatBuffers介绍

转自:https://www.jianshu.com/p/6eb04a149cd8 重要补充: https://www.cnblogs.com/lizhenghn/p/3854244.html  https://www.coder4.com/archives/4386?utm_source=...

2018-09-29 13:50:31

阅读数:55

评论数:0

Tensorflow在手机端的部署——官方demo的直接运行(1)

开篇话: 许久没有写些什么了,最近在研究深度学习训练的网络模型在移动设备端的部署问题,针对完全白纸一张的我准备写点资料记录下趟过的坑,期间看了些技术博客,修补个各种bug,怕日后再遇到,因此准备写下来。 准备写个系列篇:就叫Tensorflow在手机端(移动设备)的部署;本文为该系列的第一篇,...

2018-09-27 17:02:57

阅读数:493

评论数:0

TensorFlow学习——tf.GPUOptions和tf.ConfigProto用法解析

在服务器上用多GPU做训练时,由于想只用其中的一个GPU设备做训练,可使用深度学习代码运行时往往出现多个GPU显存被占满清理。出现该现象主要是tensorflow训练时默认占用所有GPU的显存。 查看你的源文件中是否有类似如下的代码片段: with tf.Graph().as_default...

2018-09-03 13:05:14

阅读数:1476

评论数:0

tensorboard学习—— 解决tensorboard attempted to bind to port 6006,but it was already in use问题的几种方法

在用tensorboard查看训练生成结果时, 查看的指令是(将logdir指向你训练保存的结果目录): tensorboard --logdir=yourpath/train_dir 遇到如下错误: [MainThread program.py:262] TensorBoard at...

2018-08-23 09:53:46

阅读数:564

评论数:0

TensorFlow学习——Tensorflow Object Detection API(3.模型训练篇)

2017 年 6 月, Google 公司开放了 TensorFlow Object Detection API 。 这 个项目使用 TensorFlow 实现了大多数深度学习目标检测框架,真中就包括Faster R-CNN。 本系列文章将 (1)先介绍如何安装 TensorFlow Obje...

2018-08-22 15:12:27

阅读数:796

评论数:4

Github上不错的tensorflow项目分享

转载网址:http://note.youdao.com/share/?id=71216576910b7a6cd6f2a0f2ebf8faa2&type=note#/        —— 感谢AI研习社的分享   Models in TensorFlow from Gi...

2018-08-21 11:17:27

阅读数:962

评论数:0

TensorFlow学习——Tensorflow Object Detection API(2.目标检测篇)

2017 年 6 月, Google 公司开放了 TensorFlow Object Detection API 。 这 个项目使用 TensorFlow 实现了大多数深度学习目标检测框架,真中就包括Faster R-CNN。 本系列文章将 (1)先介绍如何安装 TensorFlow Obje...

2018-08-17 00:29:51

阅读数:316

评论数:0

【深度学习】Mobilenet-SSD实现步骤

转自:http://blog.csdn.net/Jesse_Mx/article/details/78680055 墙裂推荐,自己就不写了,转载一下~ mobilenet 也算是提出有一段时间了,网上也不乏各种实现版本,其中,谷歌已经开源了Tensorflow的全部代码; 单纯的Mobile...

2018-08-16 20:00:34

阅读数:653

评论数:0

TensorFlow学习——Tensorflow Object Detection API(1.安装篇)

2017 年 6 月, Google 公司开放了 TensorFlow Object Detection API 。 这 个项目使用 TensorFlow 实现了大多数深度学习目标检测框架,真中就包括Faster R-CNN。 本系列文章将 (1)先介绍如何安装 TensorFlow Obje...

2018-08-15 20:08:12

阅读数:372

评论数:0

深度学习——Faster R-CNN原理

Fast R-CNN有个不足之处在于它事先需要Selective Search提取框,这个过程非常慢,检测一张图像,大部分时间不是花在计算神经网络分类上,而是花在Seclective Search提取框上。在Faster R-CNN中,用RPN(Region Proposal NetWork)网络...

2018-08-14 15:43:33

阅读数:109

评论数:0

深度学习——Fast R-CNN原理

在SPPNet中,实际特征提取和区域分类是两个分离的步骤,利用ROI池化层来提取每个区域的特征,然后利用传统的SVM作为分类器对这些区域进行分类。 Fast R-CNN相比SPPNet更进一步,不再使用SVM作为分类器,而是使用神经网络进行分类,这样就能同时训练特征提取网络和分类网络,比SPPN...

2018-08-14 13:48:49

阅读数:183

评论数:0

深度学习——SPPNet原理

从R-VNN 到Fast R-CNN,有必要了解下SPPNet,其全称为Spatial Pyramid Pooling Convolutional Networks(空间金字塔池化卷积网络)。 它将CNN的输入从固定尺寸改进为任意尺寸,例如在CNN结构中,输入图像的尺寸往往固定的(如224x22...

2018-08-14 13:09:09

阅读数:147

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭