Camelot: PDF表格提取利器

Camelot: PDF表格提取利器

camelot Camelot: PDF Table Extraction for Humans camelot 项目地址: https://gitcode.com/gh_mirrors/ca/camelot

1. 项目介绍

Camelot 是一个用 Python 编写的库,它让任何人都能轻松地从 PDF 文件中提取表格。Camelot 不仅提供了强大的表格识别功能,还允许用户基于准确度等指标调整和优化提取结果。每个提取的表格都可以转化为 pandas DataFrame,方便集成到 ETL 和数据分析工作流中。

2. 项目快速启动

安装

使用 conda:

conda install -c conda-forge camelot-py

使用 pip(需要先安装 tk 和 ghostscript):

pip install camelot-py[cv]

从源代码安装(需要先安装依赖):

git clone https://github.com/camelot-dev/camelot
cd camelot
pip install ".[cv]"

示例代码

import camelot

# 读取 PDF 文件
tables = camelot.read_pdf('example.pdf')

# 导出 CSV 文件
tables.export('tables.csv', f='csv')

# 获取第一个表格的数据框架
df = tables[0].df

3. 应用案例和最佳实践

提取表格

使用 Camelot 提取 PDF 中的表格非常简单。首先,你需要确定 PDF 文件是文本格式的(即你可以用鼠标在 PDF 阅读器中选择文本)。以下是提取表格的基本步骤:

import camelot

# 读取 PDF 文件
tables = camelot.read_pdf('example.pdf')

# 检查表格
for table in tables:
    print(table)

# 导出表格到 CSV
tables.export('extracted_tables.csv', f='csv')

处理提取结果

Camelot 允许你基于各种指标,如准确度和空白度,来评估和筛选提取的表格。

# 获取准确度大于 90% 的表格
high_accuracy_tables = [table for table in tables if table.parsing_report['accuracy'] > 90]

# 导出高准确度的表格
high_accuracy_tables.export('high_accuracy_tables.csv', f='csv')

4. 典型生态项目

Camelot 的设计中考虑了与其他工具和库的集成。例如,你可以将提取的数据直接转化为 pandas DataFrame,从而方便地与 Jupyter Notebook、数据分析和数据库操作等工具链进行集成。此外,Camelot 还可以与 Excalibur 这样的 web 界面工具配合使用,为用户提供更丰富的交互体验。

以上就是 Camelot 的简单介绍和快速入门。通过 Camelot,开发者可以大大简化从 PDF 文件提取表格数据的流程,提高工作效率。

camelot Camelot: PDF Table Extraction for Humans camelot 项目地址: https://gitcode.com/gh_mirrors/ca/camelot

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

史琼鸽Power

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值