CD4ML Workshop 使用教程
1. 项目介绍
CD4ML Workshop 是一个由 ThoughtWorks 开发的开源项目,旨在帮助开发者理解和实践“持续交付机器学习”(Continuous Delivery for Machine Learning, CD4ML)和“持续智能”(Continuous Intelligence)的概念。该项目包含了示例应用程序和机器学习代码,适用于各种机器学习项目的开发和部署。
2. 项目快速启动
2.1 克隆项目
首先,克隆项目到本地:
git clone https://github.com/ThoughtWorksInc/cd4ml-workshop.git
cd cd4ml-workshop
2.2 安装依赖
安装项目所需的依赖:
pip install -r requirements.txt
2.3 运行示例代码
运行一个简单的机器学习管道示例:
sh run_decisiontree_pipeline.sh
3. 应用案例和最佳实践
3.1 应用案例
CD4ML Workshop 可以应用于各种机器学习项目,特别是在需要频繁更新和部署模型的场景中。例如,在金融行业中,可以使用该项目来持续监控和更新信用评分模型。
3.2 最佳实践
- 版本控制:使用 Git 进行代码和模型的版本控制。
- 自动化测试:编写自动化测试脚本,确保每次更新后的模型性能。
- 持续集成:使用 CI/CD 工具(如 Jenkins、GitHub Actions)自动化构建和部署流程。
4. 典型生态项目
4.1 DVC (Data Version Control)
DVC 是一个用于数据科学和机器学习的版本控制系统,与 CD4ML Workshop 结合使用,可以更好地管理数据和模型的版本。
4.2 Kubeflow
Kubeflow 是一个用于在 Kubernetes 上部署和管理机器学习工作流的工具,与 CD4ML Workshop 结合使用,可以实现更高效的模型训练和部署。
4.3 MLflow
MLflow 是一个用于管理机器学习生命周期的开源平台,支持实验跟踪、模型打包和部署等功能,与 CD4ML Workshop 结合使用,可以更好地管理机器学习项目的整个生命周期。