Daytona项目Jupyter Notebook示例详解:从代码执行到可视化分析
daytona 开源开发环境管理器。 项目地址: https://gitcode.com/gh_mirrors/dayt/daytona
项目概述
Daytona是一个功能强大的开发环境管理工具,它提供了丰富的SDK接口,允许开发者通过编程方式创建、管理和交互式操作沙箱环境。本文将通过分析Jupyter Notebook示例,深入讲解Daytona的核心功能和使用方法。
环境准备与初始化
要使用Daytona SDK,首先需要导入必要的库并创建Daytona实例:
import base64
import io
import os
from pprint import pp
import matplotlib.pyplot as plt
from daytona_sdk import BarChart, CompositeChart, Daytona, LineChart, SessionExecuteRequest
daytona = Daytona()
创建沙箱环境非常简单,只需调用create()
方法:
sandbox = daytona.create()
print(sandbox.id) # 输出创建的沙箱ID
代码与命令执行
基本代码执行
Daytona支持直接执行代码片段,这对于快速测试和验证非常有用:
response = sandbox.process.code_run('print("Hello World!")')
if response.exit_code != 0:
print(f"错误: {response.exit_code} {response.result}")
else:
print(response.result) # 输出执行结果
命令行执行
除了代码片段,Daytona也支持执行完整的shell命令:
response = sandbox.process.exec('echo "Hello World from exec!"',
cwd="/home/daytona",
timeout=10)
if response.exit_code != 0:
print(f"错误: {response.exit_code} {response.result}")
else:
print(response.result)
会话式执行
对于需要保持上下文的连续操作,可以使用会话模式:
exec_session_id = "exec-session-1"
sandbox.process.create_session(exec_session_id)
# 在会话中设置环境变量
sandbox.process.execute_session_command(exec_session_id,
SessionExecuteRequest(command="export FOO=BAR"))
# 验证环境变量是否设置成功
execCommand2 = sandbox.process.execute_session_command(exec_session_id,
SessionExecuteRequest(command="echo $FOO"))
print(f"输出: {execCommand2.output}")
数据可视化功能
Daytona的一个强大特性是自动捕获远程代码执行生成的图表,并支持丰富的图表分析。
基本图表捕获
当执行包含Matplotlib绘图的代码时,Daytona会自动捕获图表信息:
code = """
import matplotlib.pyplot as plt
# 数据准备
categories = ['A', 'B', 'C', 'D']
values = [20, 35, 30, 10]
# 绘制柱状图
plt.figure(figsize=(8, 5))
plt.bar(categories, values, color='skyblue', edgecolor='black')
# 添加标签和标题
plt.xlabel('类别')
plt.ylabel('数值')
plt.title('柱状图示例')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plt.show()
"""
response = sandbox.process.code_run(code)
chart = response.artifacts.charts[0] # 获取第一个图表
# 解码并显示图表
img_data = base64.b64decode(chart.png)
img = plt.imread(io.BytesIO(img_data))
plt.imshow(img)
plt.axis("off")
plt.show()
复合图表处理
对于包含多个子图的复合图表,Daytona也能完美处理:
code = """
import matplotlib.pyplot as plt
import numpy as np
# 创建包含2个子图的复合图表
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 5))
# 子图1: 柱状图
ax1.bar(['A', 'B', 'C', 'D'], [20, 35, 30, 10])
ax1.set_title('柱状图')
# 子图2: 折线图
x = np.linspace(0, 10, 100)
ax2.plot(x, np.sin(x), label='sin(x)')
ax2.plot(x, np.cos(x), label='cos(x)')
ax2.set_title('折线图')
ax2.legend()
fig.suptitle('复合图表示例', fontsize=16)
plt.tight_layout()
plt.show()
"""
response = sandbox.process.code_run(code)
chart = response.artifacts.charts[0]
# 显示复合图表
img_data = base64.b64decode(chart.png)
img = plt.imread(io.BytesIO(img_data))
plt.imshow(img)
plt.axis("off")
plt.show()
文件系统操作
Daytona提供了完整的文件系统操作API,支持各种文件管理任务:
# 创建目录
sandbox.fs.create_folder("new-dir", "755")
# 上传文件
file_content = b"Hello, World!"
sandbox.fs.upload_file(file_content, "new-dir/data.txt")
# 文件内容替换
sandbox.fs.replace_in_files(["new-dir/data.txt"], "Hello, World!", "Goodbye, World!")
# 下载文件
downloaded_file = sandbox.fs.download_file("new-dir/data.txt")
print("文件内容:", downloaded_file.decode("utf-8"))
# 设置文件权限
sandbox.fs.set_file_permissions("new-dir/data.txt", mode="777")
# 移动文件
sandbox.fs.move_files("new-dir/data.txt", "moved-data.txt")
# 删除文件
sandbox.fs.delete_file("moved-data.txt")
Git集成
Daytona内置了Git操作支持,可以直接在沙箱中管理代码仓库:
# 克隆仓库
sandbox.git.clone("https://github.com/panaverse/learn-typescript",
"learn-typescript",
"master")
# 拉取最新代码
sandbox.git.pull("learn-typescript")
# 获取分支列表
branches = sandbox.git.branches("learn-typescript")
pp(branches)
语言服务器协议(LSP)支持
Daytona集成了LSP功能,为代码编辑提供智能支持:
# 启动TypeScript语言服务器
lsp = sandbox.create_lsp_server("typescript", "learn-typescript")
lsp.start()
# 打开文档
matches = sandbox.fs.find_files("learn-typescript", "var obj1 = new Base();")
lsp.did_open(matches[0].file)
# 获取文档符号
symbols = lsp.document_symbols(matches[0].file)
print("符号:", symbols)
# 获取代码补全建议
completions = lsp.completions(matches[0].file, {"line": 12, "character": 18})
print("补全建议:", completions)
沙箱管理
Daytona提供了完整的沙箱生命周期管理功能:
# 列出所有沙箱
sandboxes = daytona.list()
print(f"沙箱总数: {len(sandboxes)}")
# 停止沙箱
daytona.stop(sandbox)
# 启动沙箱
daytona.start(sandbox)
# 删除沙箱
daytona.delete(sandbox)
总结
Daytona项目通过其强大的SDK为开发者提供了完整的远程开发环境管理能力。从基本的代码执行到复杂的可视化分析,从文件操作到版本控制集成,Daytona都提供了简洁而强大的API接口。特别值得一提的是其自动图表捕获功能和LSP集成,极大提升了数据分析和代码开发的效率。
通过本文的示例讲解,开发者可以快速掌握Daytona的核心功能,并将其应用到实际开发工作中,构建更高效的开发工作流。
daytona 开源开发环境管理器。 项目地址: https://gitcode.com/gh_mirrors/dayt/daytona
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考