NiceGuy-Shaders 项目使用教程

NiceGuy-Shaders 项目使用教程

NiceGuy-ShadersA collection of my ReShade shaders.项目地址:https://gitcode.com/gh_mirrors/ni/NiceGuy-Shaders

1. 项目的目录结构及介绍

NiceGuy-Shaders 项目的目录结构如下:

NiceGuy-Shaders/
├── Shaders/
│   ├── NGLighting.fx
│   ├── NiceGuyLamps.fx
│   ├── ScatterFX.fx
│   ├── VolumetricFog.fx
│   ├── Rim.fx
│   ├── FastSharp.fx
│   ├── SlowSharp.fx
│   └── HoleFiller.fx
├── Textures/
├── LICENSE
└── README.md

目录介绍:

  • Shaders/: 包含所有着色器文件,每个文件对应不同的视觉效果。

    • NGLighting.fx: 用于添加全局光照(GI)/环境光遮蔽(AO)或镜面反射。
    • NiceGuyLamps.fx: 用于添加自定义点光源。
    • ScatterFX.fx: 用于增加粗糙度或去噪 DH_RTGI(已弃用,推荐使用 NGLighting)。
    • VolumetricFog.fx: 模拟物理特性的雾效。
    • Rim.fx: 模拟物体边缘光照。
    • FastSharp.fx: 简单快速的锐化滤镜。
    • SlowSharp.fx: 艺术效果的锐化滤镜。
    • HoleFiller.fx: 辅助抗锯齿着色器处理树木。
  • Textures/: 用于存放纹理文件(如果有的话)。

  • LICENSE: 项目的许可证文件,采用 CC0-1.0 许可证。

  • README.md: 项目的基本介绍和使用说明。

2. 项目的启动文件介绍

项目的启动文件主要是 README.md,它包含了项目的基本信息和使用指南。用户在首次使用项目时,应首先阅读该文件以了解项目的基本情况和使用方法。

3. 项目的配置文件介绍

项目中没有明确的配置文件,但每个着色器文件(.fx 文件)都可以通过编辑其中的参数来进行配置。例如,在 NGLighting.fx 中,可以调整以下参数:

  • Specular Reflection Intensity: 镜面反射强度。
  • Specular Reflection Roughness: 镜面反射粗糙度。

NiceGuyLamps.fx 中,可以配置点光源的颜色、亮度、位置等参数。

用户可以根据自己的需求编辑这些参数以达到最佳的视觉效果。


以上是 NiceGuy-Shaders 项目的基本使用教程,希望对您有所帮助。

NiceGuy-ShadersA collection of my ReShade shaders.项目地址:https://gitcode.com/gh_mirrors/ni/NiceGuy-Shaders

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

经薇皎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值