YOLOv5 Ascend:华为昇腾平台上的高效目标检测
项目地址:https://gitcode.com/gh_mirrors/yo/yolov5-ascend
项目介绍
YOLOv5 Ascend 是一个在华为昇腾平台上运行的 YOLOv5 模型推理程序。该项目充分利用了华为 Atlas 300I 推理卡(Ascend 310 AI CPU)的强大计算能力,通过 CANN 5.0.2 和 npu-smi 21.0.2 工具链,实现了高效的目标检测任务。用户可以通过简单的命令行操作,快速部署和运行 YOLOv5 模型,进行实时的目标检测。
项目技术分析
技术栈
- 硬件平台:华为 Atlas 300I 推理卡(Ascend 310 AI CPU)
- 软件环境:CANN 5.0.2、npu-smi 21.0.2、Python
- 依赖库:opencv_python、Pillow、torch、torchvision
模型转换
- PyTorch 到 ONNX:首先使用 ultralytics/yolov5 训练 YOLOv5 模型,并将其导出为 ONNX 格式。
- ONNX 到 OM:在华为昇腾平台上,使用
atc
工具将 ONNX 模型转换为 OM 模型,以便在 Ascend 310 AI CPU 上进行推理。
推理流程
- 克隆仓库:将生成的 OM 模型文件移动到项目目录中。
- 编辑标签文件:根据实际需求编辑标签文件。
- 运行推理程序:执行
python detect_yolov5_ascend.py
命令,结果将保存到img_out
文件夹中。
项目及技术应用场景
YOLOv5 Ascend 适用于多种目标检测场景,特别是在需要高效、实时的目标检测任务中表现尤为出色。以下是一些典型的应用场景:
- 智能监控:实时检测监控视频中的目标,如行人、车辆等。
- 工业自动化:在生产线上实时检测产品缺陷或异常。
- 自动驾驶:实时检测道路上的行人、车辆、交通标志等。
- 安防系统:实时检测异常行为或可疑物体。
项目特点
- 高效性:基于华为昇腾平台的强大计算能力,YOLOv5 Ascend 能够实现高效的目标检测,满足实时性要求。
- 易用性:项目提供了完整的模型转换和推理流程,用户只需简单的命令行操作即可完成部署和运行。
- 灵活性:支持自定义标签文件,用户可以根据实际需求灵活调整检测目标。
- 开源性:项目完全开源,用户可以自由修改和扩展,满足个性化需求。
结语
YOLOv5 Ascend 是一个在华为昇腾平台上实现的高效目标检测解决方案,适用于多种实时目标检测场景。无论你是开发者还是研究人员,都可以通过该项目快速部署和运行 YOLOv5 模型,体验华为昇腾平台的强大计算能力。欢迎访问 YOLOv5 Ascend 项目仓库,了解更多详情并开始你的目标检测之旅!
yolov5-ascend 项目地址: https://gitcode.com/gh_mirrors/yo/yolov5-ascend
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考