MST++ TensorRT 模型加速优化教程
1. 项目介绍
MST++ TensorRT 是一个针对 MST++ 模型的 TensorRT 加速优化项目。MST++ 是一个基于 Transformer 的高光谱图像重建模型,该项目通过使用 TensorRT 的 Plugin 和 API 对模型进行优化,以提高推理速度和精度。
项目背景
MST++ 是首个基于 Transformer 的 RGB-to-HSI 图像重建模型,其在 CVPR 2022 和 NTIRE 2022 挑战赛中获得了冠军。本项目旨在通过 TensorRT 技术对 MST++ 模型进行加速优化,以满足实际应用中的高性能需求。
主要功能
- 模型优化:使用 TensorRT 的 ONNXParser 和 API 对 MST++ 模型进行优化。
- 精度对比:在 FP32 和 FP16 精度下,对比 Pytorch、ONNXRuntime、TRT ONNXParser 和 TRT API 的性能。
- INT8 量化:实现 INT8 量化,进一步提高模型推理速度。
2. 项目快速启动
环境准备
-
安装依赖:
pip install -r requirements.txt
-
下载模型权重:
python get_weights.py
模型转换
-
将 Pytorch 模型转换为 ONNX 格式:
python torch2onnx.py --model_path path_to_model.pth --output_path path_to_output.onnx
-
使用 TensorRT 进行优化:
python mst_trt_api.py --onnx_path path_to_onnx_model.onnx --output_path path_to_trt_model.trt
模型推理
- 加载优化后的 TensorRT 模型并进行推理:
import tensorrt as trt import pycuda.driver as cuda import pycuda.autoinit # 加载 TensorRT 引擎 with open("path_to_trt_model.trt", "rb") as f, trt.Runtime(trt.Logger()) as runtime: engine = runtime.deserialize_cuda_engine(f.read()) # 创建执行上下文 context = engine.create_execution_context() # 准备输入数据 inputs = ... bindings = [int(input_data.gpudata)] # 执行推理 context.execute_v2(bindings)
3. 应用案例和最佳实践
应用案例
MST++ TensorRT 模型加速优化可以广泛应用于高光谱图像重建、遥感图像处理等领域。通过 TensorRT 的优化,模型在保持高精度的同时,推理速度显著提升,适用于实时或大规模数据处理场景。
最佳实践
- 动态形状支持:当前 TensorRT API 暂不支持动态形状,未来可以通过修改代码实现动态形状支持,以适应不同输入尺寸的需求。
- 混合精度优化:通过混合精度(FP16 + INT8)进一步优化模型推理速度,同时保持较高的精度。
4. 典型生态项目
TensorRT
TensorRT 是 NVIDIA 提供的高性能深度学习推理库,支持多种深度学习框架的模型优化和加速。
ONNXRuntime
ONNXRuntime 是一个跨平台的推理引擎,支持 ONNX 格式的模型,适用于多种硬件平台。
Pytorch
Pytorch 是一个流行的深度学习框架,支持动态计算图,适用于研究和开发阶段的模型训练和调试。
通过结合这些生态项目,MST++ TensorRT 模型加速优化可以实现更广泛的应用和更高的性能。