MST++ TensorRT 模型加速优化教程

MST++ TensorRT 模型加速优化教程

MST-plus-plus-TensorRT :poodle: :poodle: :poodle: TensorRT 2022复赛方案: 首个基于Transformer的图像重建模型MST++的TensorRT模型推断优化 MST-plus-plus-TensorRT 项目地址: https://gitcode.com/gh_mirrors/ms/MST-plus-plus-TensorRT

1. 项目介绍

MST++ TensorRT 是一个针对 MST++ 模型的 TensorRT 加速优化项目。MST++ 是一个基于 Transformer 的高光谱图像重建模型,该项目通过使用 TensorRT 的 Plugin 和 API 对模型进行优化,以提高推理速度和精度。

项目背景

MST++ 是首个基于 Transformer 的 RGB-to-HSI 图像重建模型,其在 CVPR 2022 和 NTIRE 2022 挑战赛中获得了冠军。本项目旨在通过 TensorRT 技术对 MST++ 模型进行加速优化,以满足实际应用中的高性能需求。

主要功能

  • 模型优化:使用 TensorRT 的 ONNXParser 和 API 对 MST++ 模型进行优化。
  • 精度对比:在 FP32 和 FP16 精度下,对比 Pytorch、ONNXRuntime、TRT ONNXParser 和 TRT API 的性能。
  • INT8 量化:实现 INT8 量化,进一步提高模型推理速度。

2. 项目快速启动

环境准备

  1. 安装依赖

    pip install -r requirements.txt
    
  2. 下载模型权重

    python get_weights.py
    

模型转换

  1. 将 Pytorch 模型转换为 ONNX 格式

    python torch2onnx.py --model_path path_to_model.pth --output_path path_to_output.onnx
    
  2. 使用 TensorRT 进行优化

    python mst_trt_api.py --onnx_path path_to_onnx_model.onnx --output_path path_to_trt_model.trt
    

模型推理

  1. 加载优化后的 TensorRT 模型并进行推理
    import tensorrt as trt
    import pycuda.driver as cuda
    import pycuda.autoinit
    
    # 加载 TensorRT 引擎
    with open("path_to_trt_model.trt", "rb") as f, trt.Runtime(trt.Logger()) as runtime:
        engine = runtime.deserialize_cuda_engine(f.read())
    
    # 创建执行上下文
    context = engine.create_execution_context()
    
    # 准备输入数据
    inputs = ...
    bindings = [int(input_data.gpudata)]
    
    # 执行推理
    context.execute_v2(bindings)
    

3. 应用案例和最佳实践

应用案例

MST++ TensorRT 模型加速优化可以广泛应用于高光谱图像重建、遥感图像处理等领域。通过 TensorRT 的优化,模型在保持高精度的同时,推理速度显著提升,适用于实时或大规模数据处理场景。

最佳实践

  1. 动态形状支持:当前 TensorRT API 暂不支持动态形状,未来可以通过修改代码实现动态形状支持,以适应不同输入尺寸的需求。
  2. 混合精度优化:通过混合精度(FP16 + INT8)进一步优化模型推理速度,同时保持较高的精度。

4. 典型生态项目

TensorRT

TensorRT 是 NVIDIA 提供的高性能深度学习推理库,支持多种深度学习框架的模型优化和加速。

ONNXRuntime

ONNXRuntime 是一个跨平台的推理引擎,支持 ONNX 格式的模型,适用于多种硬件平台。

Pytorch

Pytorch 是一个流行的深度学习框架,支持动态计算图,适用于研究和开发阶段的模型训练和调试。

通过结合这些生态项目,MST++ TensorRT 模型加速优化可以实现更广泛的应用和更高的性能。

MST-plus-plus-TensorRT :poodle: :poodle: :poodle: TensorRT 2022复赛方案: 首个基于Transformer的图像重建模型MST++的TensorRT模型推断优化 MST-plus-plus-TensorRT 项目地址: https://gitcode.com/gh_mirrors/ms/MST-plus-plus-TensorRT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云云乐Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值