OptaPlanner 快速入门及使用指南
项目地址:https://gitcode.com/gh_mirrors/op/optaplanner
1. 项目介绍
OptaPlanner 是一个强大且易用的开源人工智能(AI)约束求解器,用于软件开发者解决规划和调度问题。它采用最先进的约束求解技术,处理 NP 完全或 NP 难的问题,优化带有硬约束和软约束的计划。OptaPlanner 可以显著降低成本、提高服务质量、满足员工意愿并减少碳排放。例如,其在车辆路径规划等领域表现出色。
2. 项目快速启动
要开始使用 OptaPlanner,请按以下步骤操作:
首先,下载最新版本的 OptaPlanner 并解压缩。
# 下载 OptaPlanner
wget https://github.com/kiegroup/optaplanner/releases/download/v9.44.0.Final/optaplanner-distribution-9.44.0.Final.zip
unzip optaplanner-distribution-9.44.0.Final.zip
然后,在 Linux 或 macOS 上运行 runQuickstarts.sh
,或在 Windows 上运行 runQuickstarts.bat
。
cd optaplanner-distribution-9.44.0.Final
./bin/runQuickstarts.sh # Linux / macOS
.\bin\runQuickstarts.bat # Windows
这将启动 OptaPlanner 的快速启动示例。
如果你想要从源代码构建和运行,可以执行以下操作:
cd optaplanner-quickstarts
mvn clean install -Dquickly
cd optaplanner-examples
mvn exec:java
确保你的环境中已安装 JDK 11 或更高版本。
3. 应用案例和最佳实践
OptaPlanner 在多个领域具有广泛的应用,包括但不限于:
- 车辆路线规划:合理安排配送车辆的行驶路线,降低运营成本。
- 工作排班:自动分配员工的工作日程,平衡工作量和服务质量。
- 资源分配:高效分配有限的资源到不同的任务中,考虑各种限制条件。
- 订单拣选:优化仓库拣选流程,提高拣货效率。
为了实现最佳实践,建议遵循项目提供的代码样例和文档,了解如何定义问题域、创建约束并集成到应用程序中。
4. 典型生态项目
OptaPlanner 可无缝集成到多种开发框架和语言中,包括:
- Java 和 Kotlin
- Scala
- Python (实验性支持)
此外,它可以与流行的应用框架如 Quarkus 和 Spring Boot 结合使用,并能在 Kubernetes 和 OpenShift 上运行,适应云环境部署。
示例代码
在 Java 中使用 OptaPlanner 解决问题:
import org.optaplanner.core.api.solver.Solver;
import org.optaplanner.core.api.solver.SolverFactory;
// 创建 Solver 工厂,传入你的领域特定类作为输入
SolverFactory<MyRoster> factory = SolverFactory.create();
// 定义你的领域特定类作为输入
MyRoster problem = ...;
// 使用工厂构建 Solver
Solver<MyRoster> solver = factory.buildSolver();
// 获取解决方案,即分配后的状态
MyRoster solution = solver.solve(problem);
// 查看各个元素的分配情况
for (MyShift shift : solution.getShifts()) {
// 每个 shift 现已被指派给某个员工
}
以上是简化的使用示例,实际应用时需要详细定义问题模型和约束。
希望本指南帮助您了解并成功启动 OptaPlanner 项目。更多详细信息和进阶指导,可以访问 OptaPlanner 官方文档。