OptaPlanner 快速入门及使用指南

OptaPlanner 快速入门及使用指南

项目地址:https://gitcode.com/gh_mirrors/op/optaplanner

1. 项目介绍

OptaPlanner 是一个强大且易用的开源人工智能(AI)约束求解器,用于软件开发者解决规划和调度问题。它采用最先进的约束求解技术,处理 NP 完全或 NP 难的问题,优化带有硬约束和软约束的计划。OptaPlanner 可以显著降低成本、提高服务质量、满足员工意愿并减少碳排放。例如,其在车辆路径规划等领域表现出色。

2. 项目快速启动

要开始使用 OptaPlanner,请按以下步骤操作:

首先,下载最新版本的 OptaPlanner 并解压缩。

# 下载 OptaPlanner
wget https://github.com/kiegroup/optaplanner/releases/download/v9.44.0.Final/optaplanner-distribution-9.44.0.Final.zip
unzip optaplanner-distribution-9.44.0.Final.zip

然后,在 Linux 或 macOS 上运行 runQuickstarts.sh,或在 Windows 上运行 runQuickstarts.bat

cd optaplanner-distribution-9.44.0.Final
./bin/runQuickstarts.sh # Linux / macOS
.\bin\runQuickstarts.bat # Windows

这将启动 OptaPlanner 的快速启动示例。

如果你想要从源代码构建和运行,可以执行以下操作:

cd optaplanner-quickstarts
mvn clean install -Dquickly
cd optaplanner-examples
mvn exec:java

确保你的环境中已安装 JDK 11 或更高版本。

3. 应用案例和最佳实践

OptaPlanner 在多个领域具有广泛的应用,包括但不限于:

  • 车辆路线规划:合理安排配送车辆的行驶路线,降低运营成本。
  • 工作排班:自动分配员工的工作日程,平衡工作量和服务质量。
  • 资源分配:高效分配有限的资源到不同的任务中,考虑各种限制条件。
  • 订单拣选:优化仓库拣选流程,提高拣货效率。

为了实现最佳实践,建议遵循项目提供的代码样例和文档,了解如何定义问题域、创建约束并集成到应用程序中。

4. 典型生态项目

OptaPlanner 可无缝集成到多种开发框架和语言中,包括:

  • JavaKotlin
  • Scala
  • Python (实验性支持)

此外,它可以与流行的应用框架如 QuarkusSpring Boot 结合使用,并能在 KubernetesOpenShift 上运行,适应云环境部署。

示例代码

在 Java 中使用 OptaPlanner 解决问题:

import org.optaplanner.core.api.solver.Solver;
import org.optaplanner.core.api.solver.SolverFactory;

// 创建 Solver 工厂,传入你的领域特定类作为输入
SolverFactory<MyRoster> factory = SolverFactory.create();

// 定义你的领域特定类作为输入
MyRoster problem = ...;

// 使用工厂构建 Solver
Solver<MyRoster> solver = factory.buildSolver();

// 获取解决方案,即分配后的状态
MyRoster solution = solver.solve(problem);

// 查看各个元素的分配情况
for (MyShift shift : solution.getShifts()) {
    // 每个 shift 现已被指派给某个员工
}

以上是简化的使用示例,实际应用时需要详细定义问题模型和约束。

希望本指南帮助您了解并成功启动 OptaPlanner 项目。更多详细信息和进阶指导,可以访问 OptaPlanner 官方文档

optaplanner Mirror of https://github.com/apache/incubator-kie-optaplanner optaplanner 项目地址: https://gitcode.com/gh_mirrors/op/optaplanner

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卢千怡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值