gcForest 项目使用教程

gcForest 项目使用教程

gcForestPython implementation of deep forest method : gcForest项目地址:https://gitcode.com/gh_mirrors/gcfo/gcForest

1. 项目的目录结构及介绍

gcForest 项目的目录结构如下:

gcForest/
├── examples/
│   └── demo_mnist.py
├── gcforest/
│   ├── __init__.py
│   ├── gcforest.py
│   └── lib/
│       └── gcforest/
├── .gitignore
├── LICENSE
├── README.md
├── gcForest_tuto.ipynb
└── requirements.txt

目录结构介绍

  • examples/: 包含示例脚本,如 demo_mnist.py,用于演示如何使用 gcForest 库。
  • gcforest/: 核心代码目录,包含 __init__.pygcforest.py 文件,以及 lib/ 子目录。
  • .gitignore: Git 忽略文件。
  • LICENSE: 项目许可证。
  • README.md: 项目说明文档。
  • gcForest_tuto.ipynb: Jupyter Notebook 教程文件。
  • requirements.txt: 项目依赖文件。

2. 项目的启动文件介绍

项目的启动文件主要是 examples/demo_mnist.py,这是一个示例脚本,演示了如何使用 gcForest 库进行训练和预测。

启动文件介绍

from gcforest.gcforest import GCForest

# 配置参数
config = {
    # 配置细节
}

# 初始化 GCForest 对象
gc = GCForest(config)

# 训练模型
X_train_enc = gc.fit_transform(X_train, y_train)

# 预测
y_pred = gc.predict(X_test)

3. 项目的配置文件介绍

项目的配置文件主要是 gcforest/gcforest.py 中的 config 字典,用于配置 gcForest 的各种参数。

配置文件介绍

config = {
    "cascade": {
        "n_cascadeRF": 2,  # 级联随机森林的数量
        "n_cascadeRFtree": 100,  # 每个级联随机森林的树数量
        "min_samples_leaf": 1,  # 叶子节点的最小样本数
        "max_depth": 20,  # 树的最大深度
        "n_jobs": -1,  # 并行任务数
    },
    # 其他配置细节
}

以上是 gcForest 项目的基本使用教程,包括项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助。

gcForestPython implementation of deep forest method : gcForest项目地址:https://gitcode.com/gh_mirrors/gcfo/gcForest

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宗嫣惠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值