sklearn-benchmarks 项目使用教程

sklearn-benchmarks 项目使用教程

sklearn-benchmarks A centralized repository to report scikit-learn model performance across a variety of parameter settings and data sets. sklearn-benchmarks 项目地址: https://gitcode.com/gh_mirrors/sk/sklearn-benchmarks

1. 项目目录结构及介绍

sklearn-benchmarks/
├── metafeatures/
│   └── ...
├── model_code/
│   └── ...
├── notebooks/
│   └── ...
├── .gitignore
├── CONTRIBUTING.md
├── Clean HPCC Data.ipynb
├── LICENSE
├── README.md
└── ...
  • metafeatures/: 包含与元特征相关的文件。
  • model_code/: 包含模型代码文件。
  • notebooks/: 包含Jupyter Notebook文件,通常用于数据分析和实验。
  • .gitignore: Git忽略文件,指定哪些文件和目录不应被版本控制。
  • CONTRIBUTING.md: 贡献指南,指导如何为项目做出贡献。
  • Clean HPCC Data.ipynb: Jupyter Notebook文件,用于清理HPCC数据。
  • LICENSE: 项目许可证文件,本项目使用MIT许可证。
  • README.md: 项目介绍文件,包含项目的基本信息和使用说明。

2. 项目的启动文件介绍

项目中没有明确的“启动文件”,但可以通过运行Jupyter Notebook文件(如Clean HPCC Data.ipynb)来启动和执行项目中的代码。

3. 项目的配置文件介绍

项目中没有明确的“配置文件”,但可以通过修改Jupyter Notebook文件中的参数来配置项目的运行。例如,在Clean HPCC Data.ipynb中,可以修改数据清理的参数以适应不同的数据集。


以上是基于sklearn-benchmarks项目的目录结构、启动文件和配置文件的简要介绍。具体的使用方法和配置细节可以参考项目中的README.md文件和Jupyter Notebook文件。

sklearn-benchmarks A centralized repository to report scikit-learn model performance across a variety of parameter settings and data sets. sklearn-benchmarks 项目地址: https://gitcode.com/gh_mirrors/sk/sklearn-benchmarks

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

束葵顺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值