F3RM 项目教程

F3RM 项目教程

f3rm F3RM: Feature Fields for Robotic Manipulation. Official repo for the paper "Distilled Feature Fields Enable Few-Shot Language-Guided Manipulation" (CoRL 2023). f3rm 项目地址: https://gitcode.com/gh_mirrors/f3/f3rm

1、项目介绍

F3RM(Feature Fields for Robotic Manipulation)是一个用于机器人操作的开源项目,旨在通过将2D基础模型的特征提取到3D特征场中,实现少样本语言引导的操作。该项目由MIT CSAIL和Institute of AI and Fundamental Interactions(IAIFI)共同开发,并在CoRL 2023会议上进行了展示。

F3RM的主要功能包括:

  • 训练特征场
  • 6自由度姿态优化
  • 开放文本语言引导的操作

2、项目快速启动

安装环境

首先,确保你已经安装了conda,并创建一个新的环境:

conda create -n f3rm python=3.8
conda activate f3rm

安装依赖

安装PyTorch和CUDA工具包:

pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit
export CUDA_HOME=$CONDA_PREFIX

安装tiny-cuda-nn

pip install ninja git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch

克隆并安装F3RM

克隆项目并安装:

git clone https://github.com/f3rm/f3rm.git
cd f3rm
pip install -e .

安装命令行补全:

ns-install-cli

测试安装:

ns-train --help

下载示例数据集

使用以下命令下载示例数据集:

f3rm-download-data

训练特征场

使用以下命令开始训练:

ns-train f3rm --data <data_folder>

3、应用案例和最佳实践

应用案例

F3RM可以应用于各种机器人操作任务,例如:

  • 在桌面上抓取和放置物体
  • 通过语言指令调整物体的位置和方向

最佳实践

  • 数据准备:确保数据集的质量和多样性,以提高模型的泛化能力。
  • 超参数调整:根据具体任务调整训练参数,如学习率、批量大小等。
  • 模型评估:定期评估模型性能,确保其在实际应用中的有效性。

4、典型生态项目

Nerfstudio

F3RM基于Nerfstudio构建,Nerfstudio是一个用于训练和可视化NeRF(Neural Radiance Fields)的工具包。通过Nerfstudio,用户可以轻松地训练和可视化3D特征场。

PyTorch3D

PyTorch3D是一个用于3D深度学习的库,F3RM使用PyTorch3D进行3D模型的训练和优化。

CLIP

CLIP(Contrastive Language-Image Pretraining)是一个用于图像和文本匹配的模型,F3RM利用CLIP的特征进行语言引导的操作。

通过这些生态项目,F3RM能够实现高效、准确的机器人操作任务。

f3rm F3RM: Feature Fields for Robotic Manipulation. Official repo for the paper "Distilled Feature Fields Enable Few-Shot Language-Guided Manipulation" (CoRL 2023). f3rm 项目地址: https://gitcode.com/gh_mirrors/f3/f3rm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

滑芯桢

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值