循环缓冲区(Circular Buffer)C 实践指南

循环缓冲区(Circular Buffer)C# 实践指南

CircularBuffer-CSharpA simple, single file, implementation of a circular buffer in C#.项目地址:https://gitcode.com/gh_mirrors/ci/CircularBuffer-CSharp

本教程将引导您深入了解由 Joao Portela 开发的 CircularBuffer-CSharp 开源项目。这个项目实现了一个高效的循环缓冲区数据结构,特别适用于有限空间内处理大量流式数据。接下来,我们将依次剖析该项目的三大核心部分:目录结构、启动文件以及配置文件。

1. 项目目录结构及介绍

CircularBuffer-CSharp 的目录设计简洁明了,便于快速上手和理解:

CircularBuffer-CSharp/
│
├── CircularBuffer.cs     // 核心循环缓冲区类实现文件
├── Example/              // 示例应用程序的目录
│   ├── Example.cs        // 示例应用的主要执行文件
│   └── Program.cs       // 示例程序的入口点
├── LICENSE               // 许可证文件
├── README.md             // 项目说明文件
└── Tests/                // 测试代码目录
    ├── CircularBufferTest.cs // 循环缓冲区相关的单元测试
    └── ...
  • CircularBuffer.cs 是整个项目的核心,包含了循环缓冲区的数据结构及其操作方法。
  • Example/ 目录下提供了示例代码,演示如何在实际应用中使用该循环缓冲区。
  • Tests/ 包含了项目自动化测试文件,确保功能正确无误。
  • LICENSEREADME.md 分别是项目的许可证信息和简单介绍。

2. 项目的启动文件介绍

启动文件主要位于 Example/Program.cs。此文件作为示例应用的入口点,展示了循环缓冲区的基本用法。通过实例化 CircularBuffer<T> 类并进行一系列操作(如添加元素、读取元素等),它提供了一种直观的方式来体验和理解循环缓冲区的工作机制。以下是简化的示例逻辑概述:

using CircularBuffer;

public class Program {
    static void Main(string[] args) {
        var buffer = new CircularBuffer<int>(5); // 创建一个容量为5的循环缓冲区
        // 添加数据、读取数据、演示其特性...
    }
}

3. 项目的配置文件介绍

值得注意的是,对于纯C#库项目,特别是像 CircularBuffer-CSharp 这样的轻量级数据结构库,通常没有传统的配置文件(如.config.json)。所有的配置和设置通常是通过代码本身来进行的,例如初始化时指定缓冲区的大小等。然而,在实际应用该库到更复杂的项目中时,配置管理可能依赖于应用程序自身的配置文件。

以上就是对 CircularBuffer-CSharp 项目关键组件的详细介绍。希望这份指南能够帮助您快速掌握和应用这一循环缓冲区实现。

CircularBuffer-CSharpA simple, single file, implementation of a circular buffer in C#.项目地址:https://gitcode.com/gh_mirrors/ci/CircularBuffer-CSharp

  • 11
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于YOLOv9实现工业布匹缺陷(破洞、污渍)检测系统python源码+详细运行教程+训练好的模型+评估 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孙悦彤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值