NotaGen项目使用与启动教程

NotaGen项目使用与启动教程

NotaGen NotaGen: Advancing Musicality in Symbolic Music Generation with Large Language Model Training Paradigms NotaGen 项目地址: https://gitcode.com/gh_mirrors/no/NotaGen

1. 项目目录结构及介绍

NotaGen项目的目录结构如下:

.
├── clamp2
├── data
├── finetune
├── gradio
├── inference
├── pretrain
├── requirements.txt
├── README.md
├── notagen.png
└── LICENSE
  • clamp2: 包含CLaMP-DPO算法的实现和相关脚本。
  • data: 存放项目所需的数据集以及数据索引文件。
  • finetune: 实现对预训练模型的微调。
  • gradio: 用于展示生成的音乐和乐谱的Gradio界面。
  • inference: 实现对模型进行推理,生成音乐。
  • pretrain: 包含预训练模型的代码和配置文件。
  • requirements.txt: 项目依赖的Python库列表。
  • README.md: 项目说明文件。
  • notagen.png: 项目的logo图片。
  • LICENSE: 项目遵循的开源协议。

2. 项目的启动文件介绍

项目的主要启动文件位于pretrain目录下的train-gen.py。此文件用于启动对模型的预训练。预训练前,需要确保data目录中包含了适当的数据集和索引文件。

运行预训练的命令如下:

cd pretrain/
accelerate launch --multi_gpu --mixed_precision fp16 train-gen.py

3. 项目的配置文件介绍

项目中有多个配置文件,分别位于不同的目录下:

  • pretrain/config.py: 预训练阶段的配置文件,包括数据路径、模型参数、学习率等。
  • finetune/config.py: 微调阶段的配置文件,包含数据路径、预训练权重路径、学习率等。
  • inference/config.py: 推理阶段的配置文件,包括模型权重路径、生成样本数等。

每个配置文件都包含了影响模型训练和推理的重要参数。在进行预训练、微调或推理之前,需要根据具体的需求调整这些文件中的参数。

例如,在pretrain/config.py中,你可能需要设置如下参数:

# Configuration for the data
DATA_TRAIN_INDEX_PATH = "../data/schubert_augmented_train.jsonl"
DATA_EVAL_INDEX_PATH = "../data/schubert_augmented_eval.jsonl"

# Model parameters
MODEL_NAME = "NotaGen-large"
PRETRAINED_PATH = "../pretrain/weights_notagen_pretrain_p_size_16_p_length_1024_p_layers_20_c_layers_6_h_size_1280_lr_0.0001_batch_4.pth"

确保所有路径指向正确的位置,并根据实际情况调整模型参数。

NotaGen NotaGen: Advancing Musicality in Symbolic Music Generation with Large Language Model Training Paradigms NotaGen 项目地址: https://gitcode.com/gh_mirrors/no/NotaGen

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵇子高Quintessa

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值