NotaGen项目使用与启动教程
1. 项目目录结构及介绍
NotaGen项目的目录结构如下:
.
├── clamp2
├── data
├── finetune
├── gradio
├── inference
├── pretrain
├── requirements.txt
├── README.md
├── notagen.png
└── LICENSE
clamp2
: 包含CLaMP-DPO算法的实现和相关脚本。data
: 存放项目所需的数据集以及数据索引文件。finetune
: 实现对预训练模型的微调。gradio
: 用于展示生成的音乐和乐谱的Gradio界面。inference
: 实现对模型进行推理,生成音乐。pretrain
: 包含预训练模型的代码和配置文件。requirements.txt
: 项目依赖的Python库列表。README.md
: 项目说明文件。notagen.png
: 项目的logo图片。LICENSE
: 项目遵循的开源协议。
2. 项目的启动文件介绍
项目的主要启动文件位于pretrain
目录下的train-gen.py
。此文件用于启动对模型的预训练。预训练前,需要确保data
目录中包含了适当的数据集和索引文件。
运行预训练的命令如下:
cd pretrain/
accelerate launch --multi_gpu --mixed_precision fp16 train-gen.py
3. 项目的配置文件介绍
项目中有多个配置文件,分别位于不同的目录下:
pretrain/config.py
: 预训练阶段的配置文件,包括数据路径、模型参数、学习率等。finetune/config.py
: 微调阶段的配置文件,包含数据路径、预训练权重路径、学习率等。inference/config.py
: 推理阶段的配置文件,包括模型权重路径、生成样本数等。
每个配置文件都包含了影响模型训练和推理的重要参数。在进行预训练、微调或推理之前,需要根据具体的需求调整这些文件中的参数。
例如,在pretrain/config.py
中,你可能需要设置如下参数:
# Configuration for the data
DATA_TRAIN_INDEX_PATH = "../data/schubert_augmented_train.jsonl"
DATA_EVAL_INDEX_PATH = "../data/schubert_augmented_eval.jsonl"
# Model parameters
MODEL_NAME = "NotaGen-large"
PRETRAINED_PATH = "../pretrain/weights_notagen_pretrain_p_size_16_p_length_1024_p_layers_20_c_layers_6_h_size_1280_lr_0.0001_batch_4.pth"
确保所有路径指向正确的位置,并根据实际情况调整模型参数。