hipBLAS 使用教程
hipBLAS ROCm BLAS marshalling library 项目地址: https://gitcode.com/gh_mirrors/hi/hipBLAS
1. 项目介绍
hipBLAS 是一个基于 ROCm 的 BLAS(Basic Linear Algebra Subprograms)封装库,它支持多种后端,包括 rocBLAS 和 cuBLAS。hipBLAS 提供了一个稳定的接口,使得用户在切换后端库时无需修改自己的应用程序代码。它是 AMD ROCm 计算平台的一部分,旨在提供高性能的线性代数计算能力。
2. 项目快速启动
首先,确保您已经安装了 ROCm 平台及其依赖项。以下是在 Linux 系统上使用 hipBLAS 的基本步骤:
# 克隆 hipBLAS 仓库
git clone https://github.com/ROCmSoftwarePlatform/hipBLAS.git
# 进入 hipBLAS 目录
cd hipBLAS
# 构建并安装 hipBLAS
./install.sh -i
确保在构建前安装了 rocBLAS、rocSPARSE 和 rocSOLVER 或者 cuBLAS。
3. 应用案例和最佳实践
以下是一个简单的示例,展示了如何使用 hipBLAS 的 SGEMV
接口进行矩阵-向量乘法:
#include <hipblas.h>
#include <iostream>
int main() {
// 初始化 hipBLAS
hipblasHandle_t handle;
hipblasCreate(&handle);
// 定义矩阵和向量的大小
int m = 4;
int n = 4;
// 分配主机内存并初始化
float *A = new float[m * n];
float *x = new float[n];
float *y = new float[m];
// 初始化矩阵 A 和向量 x, y
// ...
// 执行矩阵-向量乘法
float alpha = 1.0f;
float beta = 0.0f;
hipblasSgemv(handle, HIPBLAS_OP_N, m, n, &alpha, A, m, x, 1, &beta, y, 1);
// 清理资源
delete[] A;
delete[] x;
delete[] y;
hipblasDestroy(handle);
return 0;
}
在编写使用 hipBLAS 的应用程序时,最佳实践是确保所有的矩阵和向量数据都在 GPU 内存中,并负责在主机和设备内存之间传输数据。
4. 典型生态项目
hipBLAS 是 ROCm 生态系统的一部分,以下是一些典型的相关项目:
- rocBLAS:rocBLAS 是一个高性能的 BLAS 库,它是 hipBLAS 的一个后端。
- rocSOLVER:rocSOLVER 是一个基于 rocBLAS 的线性代数求解器库。
- rocSPARSE:rocSPARSE 提供了稀疏矩阵运算的优化实现。
这些项目共同为 ROCm 提供了强大的数学计算支持,可以用于各种科学计算和数据分析应用。
hipBLAS ROCm BLAS marshalling library 项目地址: https://gitcode.com/gh_mirrors/hi/hipBLAS