n2nmn 项目教程

n2nmn 项目教程

n2nmn Code release for Hu et al. Learning to Reason: End-to-End Module Networks for Visual Question Answering. in ICCV, 2017 n2nmn 项目地址: https://gitcode.com/gh_mirrors/n2/n2nmn

1. 项目的目录结构及介绍

n2nmn/
├── data/
│   ├── README.md
│   └── ...
├── models/
│   ├── __init__.py
│   ├── model.py
│   └── ...
├── scripts/
│   ├── train.py
│   ├── test.py
│   └── ...
├── config/
│   ├── config.yaml
│   └── ...
├── README.md
├── requirements.txt
└── setup.py

目录结构介绍

  • data/: 存放项目所需的数据文件。
  • models/: 存放项目的模型定义文件。
  • scripts/: 存放项目的训练和测试脚本。
  • config/: 存放项目的配置文件。
  • README.md: 项目的介绍文档。
  • requirements.txt: 项目所需的依赖包列表。
  • setup.py: 项目的安装脚本。

2. 项目的启动文件介绍

scripts/train.py

train.py 是项目的训练脚本,用于训练模型。启动训练的命令如下:

python scripts/train.py --config config/config.yaml

scripts/test.py

test.py 是项目的测试脚本,用于测试训练好的模型。启动测试的命令如下:

python scripts/test.py --config config/config.yaml

3. 项目的配置文件介绍

config/config.yaml

config.yaml 是项目的配置文件,包含了训练和测试过程中所需的各项参数。以下是配置文件的部分内容示例:

train:
  batch_size: 32
  learning_rate: 0.001
  num_epochs: 100

test:
  batch_size: 64
  model_path: "models/best_model.pth"

配置文件介绍

  • train: 训练相关的配置参数。
    • batch_size: 训练时的批量大小。
    • learning_rate: 学习率。
    • num_epochs: 训练的总轮数。
  • test: 测试相关的配置参数。
    • batch_size: 测试时的批量大小。
    • model_path: 测试时使用的模型路径。

n2nmn Code release for Hu et al. Learning to Reason: End-to-End Module Networks for Visual Question Answering. in ICCV, 2017 n2nmn 项目地址: https://gitcode.com/gh_mirrors/n2/n2nmn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沈宝彤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值