ComfyUI-BAGEL 开源项目教程
1. 项目介绍
ComfyUI-BAGEL 是一个基于 BAGEL-7B-MoT 多模态模型的自定义节点包。BAGEL 是一个开源的多模态基础模型,拥有 70 亿个激活参数(总计 140 亿),采用混合变体专家(MoT)架构。它旨在用于多模态理解和生成任务,并在标准的多模态理解排行榜上超越了顶级开源 VLMs,如 Qwen2.5-VL 和 InternVL-2.5,同时在文本到图像的质量上与专业的生成器如 SD3 相媲美。
2. 项目快速启动
2.1 下载模型
首次使用时,BAGEL-7B-MoT 模型将自动下载到 models/bagel/BAGEL-7B-MoT/
目录下。你也可以手动下载模型:
# 使用 git lfs 克隆模型(推荐)
git lfs install
git clone https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT models/bagel/BAGEL-7B-MoT
# 或者使用 huggingface_hub
pip install huggingface_hub
python -c "
from huggingface_hub import snapshot_download; snapshot_download(repo_id='ByteDance-Seed/BAGEL-7B-MoT', local_dir='models/bagel/BAGEL-7B-MoT')
"
2.2 安装依赖
安装项目所需的依赖:
pip install -r requirements.txt
2.3 重启 ComfyUI
重启 ComfyUI 以加载新节点。
3. 应用案例和最佳实践
3.1 文本到图像生成
使用文本描述生成高质量图像,适用于创意设计和内容生成。
3.2 图像编辑工作流
根据文本描述编辑现有图像,支持本地修改和风格调整。
3.3 图像理解工作流
分析和回答有关图像内容的问题,适用于内容理解和信息提取。
4. 典型生态项目
ComfyUI-BAGEL 可以作为扩展节点集成到 ComfyUI 中,为多模态应用提供强大的功能支持。开发者可以根据具体的应用场景,围绕 ComfyUI-BAGEL 构建更多生态项目,例如:
- 多模态交互式教育应用
- 智能内容审核系统
- 多媒体创意辅助工具
通过以上步骤,开发者可以快速上手 ComfyUI-BAGEL 项目,并在实际应用中遵循最佳实践,构建出符合需求的多模态应用。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考