Seldon Core 项目使用教程

Seldon Core 项目使用教程

seldon-core An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models seldon-core 项目地址: https://gitcode.com/gh_mirrors/se/seldon-core

1. 项目目录结构及介绍

Seldon Core 是一个用于在 Kubernetes 上部署、监控和管理机器学习模型的开源框架。以下是项目的目录结构及其简要介绍:

  • .github/: 包含 GitHub 工作流和模板。
  • ansible/: 包含 Ansible 配置文件和角色。
  • ci/: Continuous Integration (CI) 相关的脚本和配置。
  • components/: Seldon Core 的核心组件。
  • core-builder/: 用于构建核心组件的脚本和配置。
  • doc/: 项目文档。
  • examples/: 示例代码和配置文件。
  • executor/: 执行器组件。
  • fbs/: 包含与 Facebook 的 Flow Based Scheduler 相关的代码。
  • hack/: 包含一些辅助脚本。
  • helm-charts/: 包含 Kubernetes Helm 图表。
  • incubating/: 包含正在孵化中的组件。
  • integrations/: 包含与第三方服务集成的代码。
  • kafka/: 与 Kafka 集成的组件。
  • licenses/: 包含项目使用的许可证。
  • marketplaces/: 包含与市场集成的组件。
  • monitoring/: 监控相关的组件和配置。
  • notebooks/: Jupyter 笔记本。
  • openapi/: 包含 OpenAPI 相关的代码。
  • operator/: Seldon Core Operator 的代码。
  • persistence/: 持久化相关的组件。
  • proto/: 包含协议缓冲区定义。
  • python-builder/: 用于构建 Python 代码的脚本。
  • python/: 包含 Python 客户端和服务器代码。
  • redis-memonly/: 与 Redis 内存数据库集成的组件。
  • release-notes/: 版本更新说明。
  • seldon-controller/: Seldon 控制器的代码。
  • servers/: 包含不同类型的服务器组件。
  • testing/: 测试相关的代码和配置。
  • util/: 包含一些工具类和函数。
  • wrappers/: 包含不同语言的包装器。
  • zookeeper-k8s/: 与 Zookeeper 集成的 Kubernetes 适配器。

2. 项目的启动文件介绍

项目的启动文件主要是通过 Kubernetes 的配置文件来部署 Seldon Core。以下是一些关键的启动文件:

  • Makefile: 包含构建和部署项目所需的命令。
  • ci_build_and_push_images.sh: 用于构建和推送 Docker 镜像的脚本。
  • create-changelog: 用于生成更新日志的脚本。

在 Kubernetes 环境中,通常会使用 Helm 图表来部署 Seldon Core。以下是一个简单的 Helm 部署示例:

kubectl create namespace seldon-system
helm install seldon-core seldon-core-operator \
--repo https://storage.googleapis.com/seldon-charts \
--set usageMetrics.enabled=true \
--namespace seldon-system \
--set istio.enabled=true

3. 项目的配置文件介绍

Seldon Core 的配置文件主要使用 YAML 格式,以下是一些常用的配置文件:

  • values.yaml: Helm 图表的默认值配置文件。
  • configmap.yaml: 包含 Seldon Core 组件配置的 ConfigMap。
  • deployment.yaml: 包含 Seldon Core 组件部署配置的 Deployment。

例如,以下是一个简单的 SeldonDeployment 配置文件,用于部署一个模型:

apiVersion: machinelearning.seldon.io/v1
kind: SeldonDeployment
metadata:
  name: iris-model
  namespace: seldon
spec:
  name: iris
  predictors:
  - graph:
      implementation: SKLEARN_SERVER
      modelUri: gs://seldon-models/v1.19.0-dev/sklearn/iris
      name: classifier
    name: default
    replicas: 1

这个配置文件定义了一个名为 iris-model 的 SeldonDeployment,它将部署一个使用 SKLEARN_SERVER 实现的模型,并指定了模型的 URI 和副本数量。

seldon-core An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models seldon-core 项目地址: https://gitcode.com/gh_mirrors/se/seldon-core

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牧韶希

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值