Apache Polaris 开源项目教程

Apache Polaris 开源项目教程

polaris-catalog Polaris Catalog is an open source catalog for Apache Iceberg polaris-catalog 项目地址: https://gitcode.com/gh_mirrors/po/polaris-catalog

1. 项目介绍

Apache Polaris 是一个开源的、完全功能齐全的 Apache Iceberg 目录。它实现了 Iceberg 的 REST API,使得在各种平台(如 Apache Doris、Apache Flink、Apache Spark、StarRocks 和 Trino)之间实现无缝的多引擎互操作性。Polaris 旨在为 Iceberg 提供一个统一的目录服务,简化数据管理和查询。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保您的开发环境满足以下要求:

  • Java 21+
  • Docker 27+

2.2 构建项目

首先,克隆项目到本地:

git clone https://github.com/snowflakedb/polaris-catalog.git
cd polaris-catalog

然后,使用 Gradle 构建项目:

./gradlew build

2.3 运行项目

构建完成后,您可以通过以下命令启动 Polaris 服务器:

./gradlew runApp

默认情况下,Polaris 服务器将在 localhost:8181 上运行。

2.4 连接到 Spark SQL

您可以使用以下命令从 Spark SQL 连接到 Polaris:

./regtests/run_spark_sql.sh

在 Spark SQL shell 中,您可以运行以下示例命令:

create database db1;
show databases;
create table db1.table1 (id int, name string);
insert into db1.table1 values (1, 'a');
select * from db1.table1;

3. 应用案例和最佳实践

3.1 数据湖管理

Polaris 可以作为数据湖的核心组件,帮助管理 Iceberg 表的元数据。通过 Polaris,您可以轻松地在多个数据湖之间同步和共享数据。

3.2 多引擎互操作

Polaris 支持多种查询引擎(如 Apache Spark、Apache Flink 等),使得在不同引擎之间切换和共享数据变得非常容易。这对于需要在不同环境中处理数据的组织来说非常有用。

3.3 实时数据分析

通过 Polaris,您可以轻松地将实时数据流与 Iceberg 表集成,从而实现实时数据分析和报告。

4. 典型生态项目

4.1 Apache Iceberg

Apache Iceberg 是一个开源的表格式,旨在解决大数据存储和查询的挑战。Polaris 作为 Iceberg 的目录服务,提供了对 Iceberg 表的元数据管理。

4.2 Apache Spark

Apache Spark 是一个快速、通用的大数据处理引擎。Polaris 与 Spark 集成,使得在 Spark 中查询和管理 Iceberg 表变得非常简单。

4.3 Apache Flink

Apache Flink 是一个流处理框架,支持实时数据处理。Polaris 与 Flink 集成,使得在 Flink 中处理 Iceberg 表数据变得非常方便。

4.4 Apache Doris

Apache Doris 是一个分布式 SQL 数据库,适用于实时分析。Polaris 与 Doris 集成,使得在 Doris 中查询和管理 Iceberg 表变得非常高效。

通过以上模块的介绍,您应该对 Apache Polaris 有了一个全面的了解,并能够快速上手使用。

polaris-catalog Polaris Catalog is an open source catalog for Apache Iceberg polaris-catalog 项目地址: https://gitcode.com/gh_mirrors/po/polaris-catalog

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

潘将栩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值