腾讯高性能分布式图计算框架Plato使用教程

腾讯高性能分布式图计算框架Plato使用教程

plato 腾讯高性能分布式图计算框架Plato plato 项目地址: https://gitcode.com/gh_mirrors/pla/plato

1、项目介绍

Plato是由腾讯开发的高性能分布式图计算框架,旨在处理大规模图数据。Plato支持多种图算法,如PageRank、社区发现等,适用于社交网络分析、推荐系统、网络安全等多个领域。Plato的设计目标是提供高效的图计算能力,支持大规模图数据的快速处理和分析。

2、项目快速启动

环境准备

Plato目前支持在x86_64架构的CentOS 7.0系统上运行。理论上,它可以轻松移植到其他Linux发行版。

安装依赖

首先,安装编译依赖:

sudo /docker/install-dependencies.sh

然后,下载并构建静态链接库:

/3rdtools.sh distclean && /3rdtools.sh install

编译和运行

编译Plato:

/build.sh

在本地运行PageRank算法示例:

/scripts/run_pagerank_local.sh

生产环境运行

在生产环境中,Plato需要一个支持MPI程序提交的集群和一个可访问的HDFS。修改并运行以下脚本:

/scripts/run_pagerank.sh

3、应用案例和最佳实践

社交网络分析

Plato可以用于分析社交网络中的用户关系,通过PageRank算法识别关键用户,或通过社区发现算法识别用户群体。

推荐系统

在推荐系统中,Plato可以用于分析用户与物品之间的关系,通过图算法识别潜在的推荐物品。

网络安全

Plato可以用于分析网络中的节点和边,识别异常行为或潜在的安全威胁。

4、典型生态项目

Gemini

Gemini是一个计算为中心的分布式图处理系统,Plato的部分基本实用功能和双模算法设计原则受到Gemini的影响。

KnightKing

KnightKing是一个快速的分布式图随机游走引擎,为Plato的walk-engine提供了基础。

通过以上步骤,您可以快速上手并使用Plato进行大规模图数据的计算和分析。

plato 腾讯高性能分布式图计算框架Plato plato 项目地址: https://gitcode.com/gh_mirrors/pla/plato

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

潘将栩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值