探索神经网络的计算复杂度:ptflops 工具介绍

探索神经网络的计算复杂度:ptflops 工具介绍

flops-counter.pytorchFlops counter for convolutional networks in pytorch framework项目地址:https://gitcode.com/gh_mirrors/fl/flops-counter.pytorch

在深度学习领域,理解和优化神经网络的计算复杂度是提升模型性能和效率的关键。今天,我们将介绍一款强大的开源工具——ptflops,它能够帮助开发者精确计算PyTorch框架下神经网络的理论乘加操作(MACs)数量,从而更好地理解和优化模型。

项目介绍

ptflops是一款专为PyTorch框架设计的工具,旨在计算神经网络的理论乘加操作数量。它不仅能够计算模型的参数数量,还能详细打印每一层的计算成本,为模型的优化和分析提供了有力的支持。

项目技术分析

ptflops提供了两种后端:pytorchatenpytorch后端主要考虑nn.Modules,适用于CNN等模型的详细层级分析。而aten后端则覆盖了更多的模型架构,包括transformer等,因为它考虑了aten操作。

aten后端

  • 操作考虑:包括aten.mm, aten.matmul, aten.addmm, aten.bmm, aten.convolution等。
  • 使用提示:使用verbose=True可以查看未被考虑的操作。

pytorch后端

  • 支持层:包括Conv1d/2d/3d, ConvTranspose1d/2d/3d, BatchNorm, Activations, Linear, Upsample, Poolings等。
  • 实验性支持:RNN, LSTM, GRU, MultiheadAttention, DeformConv2d, 以及timm中的视觉transformer。

项目及技术应用场景

ptflops适用于以下场景:

  • 模型优化:通过精确计算每一层的计算成本,帮助开发者识别和优化计算密集型层。
  • 模型比较:在不同模型之间进行计算复杂度的比较,选择最优模型。
  • 研究分析:为学术研究和模型分析提供详细的计算成本数据。

项目特点

  • 精确计算:能够精确计算神经网络的理论乘加操作数量。
  • 多后端支持:提供pytorchaten两种后端,覆盖更多模型架构。
  • 详细层级分析:打印每一层的计算成本,帮助开发者进行更细致的优化。
  • 易于使用:简单的API和详细的文档,使得开发者能够快速上手。

安装与使用

安装

从PyPI安装:

pip install ptflops

从GitHub安装:

pip install --upgrade git+https://github.com/sovrasov/flops-counter.pytorch.git

使用示例

import torchvision.models as models
import torch
from ptflops import get_model_complexity_info

with torch.cuda.device(0):
  net = models.densenet161()
  macs, params = get_model_complexity_info(net, (3, 224, 224), as_strings=True, backend='pytorch',
                                           print_per_layer_stat=True, verbose=True)
  print('{:<30}  {:<8}'.format('Computational complexity: ', macs))
  print('{:<30}  {:<8}'.format('Number of parameters: ', params))

通过以上介绍,相信您已经对ptflops有了全面的了解。无论是模型优化、比较还是研究分析,ptflops都能为您提供强大的支持。赶快尝试一下,探索神经网络的计算复杂度吧!

flops-counter.pytorchFlops counter for convolutional networks in pytorch framework项目地址:https://gitcode.com/gh_mirrors/fl/flops-counter.pytorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丁璋英Lester

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值