Rgee: R语言连接Google Earth Engine的捷径
rgee Google Earth Engine for R 项目地址: https://gitcode.com/gh_mirrors/rg/rgee
项目介绍
Rgee 是一个为 R 语言开发者设计的包,它使得通过 R 脚本调用 Google Earth Engine (GEE) API 成为可能。这个强大的工具桥接了 R 的统计和空间分析能力与 GEE 巨大的地球观测数据集及云计算处理能力。GEE 提供PB级的卫星图像数据,并支持在谷歌的基础设施上进行地理空间分析,以往这仅对Python和JavaScript开发者开放。Rgee 的出现填补了这一空白,让R语言社区也能享受这一资源。
项目快速启动
安装 Rgee
首先,确保您的环境准备就绪。您将需要安装 rgee
以及相关的依赖,包括 numpy
, earthengine-api
和配置 GCloud SDK。在 R 中可以直接通过以下命令从CRAN安装最新稳定版:
install.packages("rgee")
或者获取最新的开发版本,可以使用 remotes
包:
if (!requireNamespace("remotes", quietly = TRUE))
install.packages("remotes")
remotes::install_github("r-spatial/rgee")
初始化设置涉及环境变量和认证过程,例如:
Sys.setenv("RETICULATE_PYTHON" = "/path/to/your/python3")
Sys.setenv("EARTHENGINE_GCLOUD" = "/path/to/your/gcloud/sdk/bin/")
ee.Authenticate()
ee_Initialize()
请注意,这些步骤可能需要根据个人环境进行调整。
第一个示例
接下来,利用Rgee进行简单的数据访问。比如,获取一个地形数据集并查看其波段名称:
library(rgee)
ee_Initialize()
db <- 'CGIAR/SRTM90_V4'
image <- ee$Image(db)
print(image$bandNames()$getInfo())
应用案例和最佳实践
夜间灯光趋势分析
演示如何分析夜间灯光的时间序列变化,展示城市化的足迹:
-
创建时间带函数,将图像采集日期转换成年份距1991年的差值:
createTimeBand <- function(img) { year <- img$getImageDate()$get("year")$subtract(1991L) return(ee$Image(year)$byte()$addBands(img)) }
-
应用到夜间灯光数据并计算趋势:
collection <- ee$ImageCollection("NOAA/DMSP-OLS/NIGHTTIME_LIGHTS") %>% select("stable_lights") %>% map(createTimeBand)
-
可视化结果: 使用
Map.addLayer
函数在Google Earth Engine的地图界面显示处理后的数据。
典型生态项目
Rgee因其无缝整合R生态与GEE的能力而广泛应用于多个领域,如气候变化监测、自然资源管理、城市规划等。一个具体的应用实例可能涉及到结合遥感数据与本地GIS数据(如Shapefiles),来进行土地覆盖变化分析或水资源监测。例如,提取特定区域长期的气候参数变化,用于农业决策支持系统,或者分析森林覆盖动态,都是Rgee能够出色完成的任务。
示例:TerraClimate数据提取
下面的例子展示了如何使用Rgee提取TerraClimate的月降水量数据:
library(tidyverse)
library(rgee)
library(sf)
ee_Initialize()
# 加载区域地图数据
nc <- st_read(system.file("shape/nc.shp", package="sf"), quiet=TRUE)
# 获取并处理TerraClimate降水量数据
terraclimate <- ee$ImageCollection("IDAHO_EPSCOR/TERRACLIMATE") %>%
filterDate("2001-01-01", "2001-12-31") %>%
map(function(x) x$select("pr")) %>%
toBands() %>%
rename(paste0("PP_", 1:12))
# 提取数据
ee_nc_rain <- ee_extract(x = terraclimate, y = nc["NAME"], sf = FALSE)
# 数据处理与可视化
ee_nc_rain %>%
pivot_longer(-NAME, names_to = "Month", values_to = "Rainfall") %>%
ggplot(aes(x = Month, y = Rainfall, group = NAME, color = NAME)) +
geom_line(alpha = 0.7) +
labs(title = "2001年度北卡罗来纳州每月平均降雨量", x = "月份", y = "毫米")
通过这种方式,Rgee不仅简化了高级地球观测数据分析的入口点,还扩大了R在环境科学、地理信息系统等领域的应用范围。
rgee Google Earth Engine for R 项目地址: https://gitcode.com/gh_mirrors/rg/rgee
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考