ONNX 简化器 (onnx-simplifier) 教程

ONNX 简化器 (onnx-simplifier) 教程

项目地址:https://gitcode.com/gh_mirrors/on/onnx-simplifier

1. 项目目录结构及介绍

ONNX 简化器(onnx-simplifier)是一个Python库,用于简化ONNX模型,减少冗余运算符,提高模型的可读性和效率。项目的主要目录结构如下:

.
├── README.md          # 主页文档
├── examples           # 示例代码
│   ├── example1.py     # 基础示例
│   └── ...             # 其他示例
├── onnx_simplifier    # 库源代码
│   ├── __init__.py      # 初始化文件
│   ├── onnxhelper.py    # ONNX辅助函数
│   ├── validator       # 验证模块
│   └── ...
└── tests               # 测试用例
    ├── test_example.py   # 示例测试
    └── test_simply.py    # 简化功能测试

examples 目录包含了如何使用库的基本示例,而 onnx_simplifier 存放核心实现,包括 __init__.py 中的 simplify 函数和其他辅助函数。

2. 项目的启动文件介绍

尽管这不是一个标准的命令行应用程序,但是你可以通过导入Python库中的 simplify 函数来启动使用。例如,在你的脚本中:

import onnx
from onnxsim import simplify

# 加载ONNX模型
model = onnx.load('path_to_your_model.onnx')

# 对模型进行简化
model_simplified = simplify(model)

# 检查简化后的模型是否有效
assert onnx.checker.check_model(model_simplified), "Simplified ONNX model could not be validated"

# 保存简化后的模型
onnx.save(model_simplified, 'path_to_output_model.onnx')

这个启动过程涉及到加载ONNX模型,然后用 simplify 进行简化,最后验证简化后的模型并保存。

3. 项目的配置文件介绍

onnx-simplifier 本身没有特定的配置文件,因为它的简化过程是基于ONNX模型的结构。然而,你在使用过程中可能需要调整相关环境变量,例如PYTHONPATH来确保正确地找到和引入库。

如果你需要定制简化规则或行为,可以通过覆盖或扩展库中的辅助函数来自定义。例如,你可以创建自己的 ONNX 图遍历逻辑或常量折叠策略,然后在自己的代码中替换默认的 onnxhelper 功能。

请注意,如果需要更多高级配置,如日志级别或额外的优化选项,你通常会期望从库的API中获取这些控制而不是通过配置文件。在 onnx-simplifier 的情况下,这主要涉及对输入模型进行特殊处理或自定义验证步骤。

onnx-simplifier Simplify your onnx model onnx-simplifier 项目地址: https://gitcode.com/gh_mirrors/on/onnx-simplifier

要使用ONNX模型简化操作,需要使用ONNX Runtime的Python API。下面是一个简单的示例代码,演示如何使用ONNX Runtime简化ONNX模型。 ```python import onnx import onnxruntime as ort # 加载ONNX模型 onnx_model = onnx.load('model.onnx') # 创建ONNX Runtime的推理会话 ort_session = ort.InferenceSession('model.onnx') # 获取模型的输入和输出名称 input_name = ort_session.get_inputs()[0].name output_name = ort_session.get_outputs()[0].name # 加载一个输入张量 input_data = np.random.rand(1, 3, 224, 224).astype(np.float32) # 运行推理 output_data = ort_session.run([output_name], {input_name: input_data}) # 打印输出 print(output_data) ``` 在这个示例中,我们使用ONNX Runtime加载了一个ONNX模型,并创建了一个推理会话。我们还获取了输入和输出张量的名称,并加载了一个输入张量。最后,我们运行了推理,并打印了输出。 要进行模型简化操作,我们需要使用ONNX Runtime的优化。下面是一个简单的示例代码,演示如何使用ONNX Runtime的优化简化ONNX模型。 ```python import onnx import onnxruntime as ort # 加载ONNX模型 onnx_model = onnx.load('model.onnx') # 创建ONNX Runtime的优化 optimized_model = ort.ORTTrainerModel.optimize(onnx_model) # 保存简化后的模型 onnx.save(optimized_model, 'optimized_model.onnx') ``` 在这个示例中,我们使用ONNX Runtime的ORTTrainerModel.optimize()方法简化ONNX模型,并将简化后的模型保存到了本地。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谢贝泰Neville

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值