ONNX 简化器 (onnx-simplifier) 教程
项目地址:https://gitcode.com/gh_mirrors/on/onnx-simplifier
1. 项目目录结构及介绍
ONNX 简化器(onnx-simplifier)是一个Python库,用于简化ONNX模型,减少冗余运算符,提高模型的可读性和效率。项目的主要目录结构如下:
.
├── README.md # 主页文档
├── examples # 示例代码
│ ├── example1.py # 基础示例
│ └── ... # 其他示例
├── onnx_simplifier # 库源代码
│ ├── __init__.py # 初始化文件
│ ├── onnxhelper.py # ONNX辅助函数
│ ├── validator # 验证模块
│ └── ...
└── tests # 测试用例
├── test_example.py # 示例测试
└── test_simply.py # 简化功能测试
examples
目录包含了如何使用库的基本示例,而 onnx_simplifier
存放核心实现,包括 __init__.py
中的 simplify
函数和其他辅助函数。
2. 项目的启动文件介绍
尽管这不是一个标准的命令行应用程序,但是你可以通过导入Python库中的 simplify
函数来启动使用。例如,在你的脚本中:
import onnx
from onnxsim import simplify
# 加载ONNX模型
model = onnx.load('path_to_your_model.onnx')
# 对模型进行简化
model_simplified = simplify(model)
# 检查简化后的模型是否有效
assert onnx.checker.check_model(model_simplified), "Simplified ONNX model could not be validated"
# 保存简化后的模型
onnx.save(model_simplified, 'path_to_output_model.onnx')
这个启动过程涉及到加载ONNX模型,然后用 simplify
进行简化,最后验证简化后的模型并保存。
3. 项目的配置文件介绍
onnx-simplifier
本身没有特定的配置文件,因为它的简化过程是基于ONNX模型的结构。然而,你在使用过程中可能需要调整相关环境变量,例如PYTHONPATH
来确保正确地找到和引入库。
如果你需要定制简化规则或行为,可以通过覆盖或扩展库中的辅助函数来自定义。例如,你可以创建自己的 ONNX 图遍历逻辑或常量折叠策略,然后在自己的代码中替换默认的 onnxhelper
功能。
请注意,如果需要更多高级配置,如日志级别或额外的优化选项,你通常会期望从库的API中获取这些控制而不是通过配置文件。在 onnx-simplifier
的情况下,这主要涉及对输入模型进行特殊处理或自定义验证步骤。
onnx-simplifier Simplify your onnx model 项目地址: https://gitcode.com/gh_mirrors/on/onnx-simplifier