TradingView-Machine-Learning-GUI 教程

TradingView-Machine-Learning-GUI 教程

TradingView-Machine-Learning-GUIEmbark on a trading journey with this project's cutting-edge stop loss/take profit generator, fine-tuning your TradingView strategy to perfection. Harness the power of sklearn's machine learning algorithms to unlock unparalleled strategy optimization and unleash your trading potential.项目地址:https://gitcode.com/gh_mirrors/tr/TradingView-Machine-Learning-GUI

1. 项目介绍

TradingView-Machine-Learning-GUI 是一个基于Python开发的项目,它为交易者提供了一种高效的方式来优化他们在TradingView平台上的策略。该工具集成了停损/止盈点计算器以及机器学习算法(如sklearn),用于超参数调优,帮助提高交易策略的表现。通过计算一系列风险回报比,如Sharpe比率、Sortino比率等,该项目旨在最大化潜在利润并降低风险。

2. 项目快速启动

安装步骤

  1. 下载Firefox浏览器和TradingView_Machine_Learning文件夹。
  2. 将下载的zip文件解压至桌面,并执行TradeViewGUI.exe文件。
  3. 在应用程序中输入Firefox配置文件路径。
  4. 使用Firefox登录你的TradingView账号,在图表上添加要优化的策略,并保存图表(按Ctrl+S)。
  5. 输入长线和短线参数,点击“运行”按钮。

示例代码:

# 如果你在终端环境中操作,可以使用以下命令进行解压缩
unzip TradingView_Machine_Learning.zip -d ~/Desktop/
cd ~/Desktop/TradingView_Machine_Learning/
./TradeViewGUI.exe

配置与运行

  1. 打开Firefox,登录到TradingView。
  2. 创建或加载你要优化的策略到图表上,确保保存图表设置。
  3. 将Firefox的个人资料路径复制粘贴到GUI应用中。
  4. 输入策略参数,单击“Run”以开始优化过程。

3. 应用案例和最佳实践

  • 策略优化:将已有的TradingView策略导入并利用机器学习找到最佳的停损和止盈点。
  • 风险管理:利用提供的风险指标(如Sortino比率和Calmar比率)来评估优化后的策略的风险承受能力。
  • 实时测试:在真实市场环境下测试优化后的策略,观察其性能表现。

最佳实践:

  • 数据质量:确保使用的交易数据完整且无误。
  • 多周期测试:使用不同时间周期的数据进行回测,检验策略的普适性。
  • 参数网格搜索:结合机器学习算法,尝试不同的参数组合以寻找最优解。

4. 典型生态项目

  • TradingView API:项目可与TradingView API结合,实现自动交易和更深入的分析功能。
  • pandas库:用于处理和分析交易历史数据。
  • scikit-learn:提供丰富的机器学习模型,用于策略的训练和优化。

以上就是对TradingView-Machine-Learning-GUI的简单介绍和快速上手指南。通过灵活运用这些工具,你可以提高自己的交易策略效率,并在金融市场中取得更好的交易成果。

TradingView-Machine-Learning-GUIEmbark on a trading journey with this project's cutting-edge stop loss/take profit generator, fine-tuning your TradingView strategy to perfection. Harness the power of sklearn's machine learning algorithms to unlock unparalleled strategy optimization and unleash your trading potential.项目地址:https://gitcode.com/gh_mirrors/tr/TradingView-Machine-Learning-GUI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凌萍鹃Dillon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值