GPT-NeoX 项目使用教程

GPT-NeoX 项目使用教程

项目地址:https://gitcode.com/gh_mirrors/gp/gpt-neox

1. 项目的目录结构及介绍

GPT-NeoX 项目的目录结构如下:

gpt-neox/
├── configs/
│   ├── 20B.yml
│   ├── local_setup.yml
│   └── ...
├── data/
│   ├── custom_data/
│   └── ...
├── DeepSpeedExamples/
│   ├── cifar/
│   └── ...
├── docker/
│   ├── Dockerfile
│   └── ...
├── megatron/
│   ├── arguments.py
│   └── ...
├── README.md
├── requirements.txt
├── setup.py
└── train.py

目录结构介绍

  • configs/: 包含项目的配置文件,如 20B.ymllocal_setup.yml
  • data/: 用于存放自定义数据集。
  • DeepSpeedExamples/: 包含一些 DeepSpeed 的示例。
  • docker/: 包含 Docker 相关的文件,如 Dockerfile
  • megatron/: 包含 Megatron 相关的代码文件。
  • README.md: 项目的说明文档。
  • requirements.txt: 项目的依赖文件。
  • setup.py: 项目的安装脚本。
  • train.py: 项目的启动文件。

2. 项目的启动文件介绍

项目的启动文件是 train.py,它负责启动训练过程。以下是 train.py 的主要功能:

  • 加载配置文件。
  • 初始化模型和数据集。
  • 启动训练循环。

使用方法

python train.py --config configs/20B.yml

3. 项目的配置文件介绍

配置文件位于 configs/ 目录下,常用的配置文件包括 20B.ymllocal_setup.yml

配置文件示例

以下是 20B.yml 的部分内容:

model:
  vocab_size: 50257
  hidden_size: 2048
  num_layers: 48
  num_attention_heads: 16

training:
  batch_size: 1538
  learning_rate: 0.0001
  max_steps: 150000

配置文件介绍

  • model: 定义模型的参数,如词汇表大小、隐藏层大小、层数和注意力头数。
  • training: 定义训练的参数,如批次大小、学习率和最大步数。

通过修改配置文件,可以调整模型的结构和训练参数。

gpt-neox An implementation of model parallel autoregressive transformers on GPUs, based on the DeepSpeed library. gpt-neox 项目地址: https://gitcode.com/gh_mirrors/gp/gpt-neox

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

余印榕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值