Strava-local-heatmap 项目使用教程
项目介绍
Strava-local-heatmap 是一个开源项目,旨在帮助用户使用 Python 和 Folium 库在本地创建 Strava 热力图。该项目允许用户通过处理本地的 GPX 文件来生成个性化的运动活动热力图,从而可视化他们的运动轨迹和活动分布。
项目快速启动
环境准备
- 安装 Python 3.x
- 安装必要的 Python 库:
pip install folium pandas
下载项目
git clone https://github.com/remisalmon/Strava-local-heatmap.git
cd Strava-local-heatmap
生成热力图
- 将你的 Strava 活动 GPX 文件放入
data
目录。 - 运行以下 Python 脚本:
import folium import pandas as pd from glob import glob # 读取所有 GPX 文件 gpx_files = glob('data/*.gpx') # 解析 GPX 文件并提取坐标 coordinates = [] for gpx_file in gpx_files: with open(gpx_file, 'r') as f: for line in f: if 'trkpt' in line: lat = float(line.split('lat="')[1].split('"')[0]) lon = float(line.split('lon="')[1].split('"')[0]) coordinates.append([lat, lon]) # 创建地图 map = folium.Map(location=[48.8566, 2.3522], zoom_start=12) # 添加热力图层 folium.plugins.HeatMap(coordinates).add_to(map) # 保存地图为 HTML 文件 map.save('heatmap.html')
应用案例和最佳实践
应用案例
- 个人运动分析:通过生成热力图,用户可以直观地看到自己在哪些区域进行了最多的运动活动,从而更好地规划未来的运动路线。
- 团队运动管理:运动团队可以使用热力图来分析团队成员的活动分布,优化团队训练计划。
最佳实践
- 数据隐私:在处理和分享热力图时,确保不泄露个人敏感信息,如家庭住址等。
- 数据准确性:确保 GPX 文件的准确性和完整性,以生成高质量的热力图。
典型生态项目
- Strava local heatmap browser:一个用于本地生成 Strava 全球热力图的工具,支持处理本地的 GPX 文件。
- Visualization of activities from Garmin Connect:用于处理 Garmin Connect 的 GPX 文件,生成活动可视化图表。
- Create artistic visualisations with your Strava exercise data:用于创建艺术化的 Strava 运动数据可视化图表,支持 Python 和 R 版本。
通过以上教程,您可以快速上手并使用 Strava-local-heatmap 项目生成个性化的运动热力图,并了解相关的应用案例和最佳实践。